In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads o...In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads of a healthy young subject is larger than that of a healthy old subject. It was shown that the cross-correlation relationship decreases with the aging process and the phenomenon can help to diagnose whether the subject's brain function is healthy or not.展开更多
This paper studies the multiscale entropy (MSE) of electrocardiogram's ST segment and compares the MSE results of ST segment with that of electrocardiogram in the first time. Electrocardiogram complexity changing c...This paper studies the multiscale entropy (MSE) of electrocardiogram's ST segment and compares the MSE results of ST segment with that of electrocardiogram in the first time. Electrocardiogram complexity changing characteristics has important clinical significance for early diagnosis. Study shows that the average MSE values and the varying scope fluctuation could be more effective to reveal the heart health status. Particularly the multiscale values varying scope fluctuation is a more sensitive parameter for early heart disease detection and has a clinical diagnostic significance.展开更多
In this paper, we use symbolic transfer entropy to study the coupling strength between premature signals. Numerical experiments show that three types of signal couplings are in the same direction. Among them, normal s...In this paper, we use symbolic transfer entropy to study the coupling strength between premature signals. Numerical experiments show that three types of signal couplings are in the same direction. Among them, normal signal coupling is the strongest, followed by that of premature ventricular contractions, and that of atrial premature beats is the weakest. The T test shows that the entropies of the three signals are distinct. Symbolic transfer entropy requires less data, can distinguish the three types of signals and has very good computational efficiency.展开更多
In Wyner-Ziv (WZ) Distributed Video Coding (DVC), correlation noise model is often used to describe the error distribution between WZ frame and the side information. The accuracy of the model can influence the perform...In Wyner-Ziv (WZ) Distributed Video Coding (DVC), correlation noise model is often used to describe the error distribution between WZ frame and the side information. The accuracy of the model can influence the performance of the video coder directly. A mixture correlation noise model in Discrete Cosine Transform (DCT) domain for WZ video coding is established in this paper. Different correlation noise estimation method is used for direct current and alternating current coefficients. Parameter estimation method based on expectation maximization algorithm is used to estimate the Laplace distribution center of direct current frequency band and Mixture Laplace-Uniform Distribution Model (MLUDM) is established for alternating current coefficients. Experimental results suggest that the proposed mixture correlation noise model can describe the heavy tail and sudden change of the noise accurately at high rate and make significant improvement on the coding efficiency compared with the noise model presented by DIStributed COding for Video sERvices (DISCOVER).展开更多
In this paper, we applied RobustICA to speech separation and made a comprehensive comparison to FastICA according to the separation results. Through a series of speech signal separation test, RobustICA reduced the sep...In this paper, we applied RobustICA to speech separation and made a comprehensive comparison to FastICA according to the separation results. Through a series of speech signal separation test, RobustICA reduced the separation time consumed by FastICA with higher stability, and speeches separated by RobustICA were proved to having lower separation errors. In the 14 groups of speech separation tests, separation time consumed by RobustICA was 3.185 s less than FastICA by nearly 68%. Separation errors of FastICA had a float between 0.004 and 0.02, while the errors of RobustlCA remained around 0.003. Furthermore, compared to FastICA, RobustlCA showed better separation robustness. Experimental results showed that RohustICA was successful to apply to the speech signal separation, and showed superiority to FastlCA in speech separation.展开更多
基金supported by the Science Foundation of Jiangsu Province of China (Grant No.BK2011759)
文摘In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads of a healthy young subject is larger than that of a healthy old subject. It was shown that the cross-correlation relationship decreases with the aging process and the phenomenon can help to diagnose whether the subject's brain function is healthy or not.
基金Project supported by the National Science Foundation (Grant No 60501003)Jiangsu Province University Science Research Guidance Plans (Grant No 06KJD510138)support from Jiangsu Province Cyan projects (Grant No TJ207016)
文摘This paper studies the multiscale entropy (MSE) of electrocardiogram's ST segment and compares the MSE results of ST segment with that of electrocardiogram in the first time. Electrocardiogram complexity changing characteristics has important clinical significance for early diagnosis. Study shows that the average MSE values and the varying scope fluctuation could be more effective to reveal the heart health status. Particularly the multiscale values varying scope fluctuation is a more sensitive parameter for early heart disease detection and has a clinical diagnostic significance.
基金Project supported by the Jiangsu Province Science Foundation,China(Grant No.BK2011759)
文摘In this paper, we use symbolic transfer entropy to study the coupling strength between premature signals. Numerical experiments show that three types of signal couplings are in the same direction. Among them, normal signal coupling is the strongest, followed by that of premature ventricular contractions, and that of atrial premature beats is the weakest. The T test shows that the entropies of the three signals are distinct. Symbolic transfer entropy requires less data, can distinguish the three types of signals and has very good computational efficiency.
基金Supported by the National Natural Science Foundation of China (No. 61071091)Jiangsu Province Graduate Innovative Research Plan (CX07B_107Z)
文摘In Wyner-Ziv (WZ) Distributed Video Coding (DVC), correlation noise model is often used to describe the error distribution between WZ frame and the side information. The accuracy of the model can influence the performance of the video coder directly. A mixture correlation noise model in Discrete Cosine Transform (DCT) domain for WZ video coding is established in this paper. Different correlation noise estimation method is used for direct current and alternating current coefficients. Parameter estimation method based on expectation maximization algorithm is used to estimate the Laplace distribution center of direct current frequency band and Mixture Laplace-Uniform Distribution Model (MLUDM) is established for alternating current coefficients. Experimental results suggest that the proposed mixture correlation noise model can describe the heavy tail and sudden change of the noise accurately at high rate and make significant improvement on the coding efficiency compared with the noise model presented by DIStributed COding for Video sERvices (DISCOVER).
基金National Natural Science Foundation of Chinagrant number:61271082,61201029,61102094
文摘In this paper, we applied RobustICA to speech separation and made a comprehensive comparison to FastICA according to the separation results. Through a series of speech signal separation test, RobustICA reduced the separation time consumed by FastICA with higher stability, and speeches separated by RobustICA were proved to having lower separation errors. In the 14 groups of speech separation tests, separation time consumed by RobustICA was 3.185 s less than FastICA by nearly 68%. Separation errors of FastICA had a float between 0.004 and 0.02, while the errors of RobustlCA remained around 0.003. Furthermore, compared to FastICA, RobustlCA showed better separation robustness. Experimental results showed that RohustICA was successful to apply to the speech signal separation, and showed superiority to FastlCA in speech separation.