Data volume grows explosively with the proliferation of powerful smartphones and innovative mobile applications.The ability to accurately and extensively monitor and analyze these data is necessary.Much concern in cel...Data volume grows explosively with the proliferation of powerful smartphones and innovative mobile applications.The ability to accurately and extensively monitor and analyze these data is necessary.Much concern in cellular data analysis is related to human beings and their behaviours.Due to the potential value that lies behind these massive data,there have been different proposed approaches for understanding corresponding patterns.To that end,analyzing people's activities,e.g.,counting them at fixed locations and tracking them by generating origindestination matrices is crucial.The former can be used to determine the utilization of assets like roads and city attractions.The latter is valuable when planning transport infrastructure.Such insights allow a government to predict the adoption of new roads,new public transport routes,modification of existing infrastructure,and detection of congestion zones,resulting in more efficient designs and improvement.Smartphone data exploration can help research in various fields,e.g.,urban planning,transportation,health care,and business marketing.It can also help organizations in decision making,policy implementation,monitoring,and evaluation at all levels.This work aims to review the methods and techniques that have been implemented to discover knowledge from mobile phone data.We classify these existing methods and present a taxonomy of the related work by discussing their pros and cons.展开更多
1.The problem The term'concussion'refers to a common form of traumatic brain injury,which typically occurs after a blow or injury to the head.It has been described as a'complex pathophysiological process a...1.The problem The term'concussion'refers to a common form of traumatic brain injury,which typically occurs after a blow or injury to the head.It has been described as a'complex pathophysiological process affecting the brain,induced by biomechanical factors',and shear forces induced by rotational acceleration are believed to be the primary mechanism of injury in concussion.~1The incidence of concussion in the UK has been shown to be展开更多
Image emotion classification(IEC)aims to extract the abstract emotions evoked in images.Recently,language-supervised methods such as con-trastive language-image pretraining(CLIP)have demonstrated superior performance ...Image emotion classification(IEC)aims to extract the abstract emotions evoked in images.Recently,language-supervised methods such as con-trastive language-image pretraining(CLIP)have demonstrated superior performance in image under-standing.However,the underexplored task of IEC presents three major challenges:a tremendous training objective gap between pretraining and IEC,shared suboptimal prompts,and invariant prompts for all instances.In this study,we propose a general framework that effectively exploits the language-supervised CLIP method for the IEC task.First,a prompt-tuning method that mimics the pretraining objective of CLIP is introduced,to exploit the rich image and text semantics associated with CLIP.Subsequently,instance-specific prompts are automatically composed,conditioning them on the categories and image content of instances,diversifying the prompts,and thus avoiding suboptimal problems.Evaluations on six widely used affective datasets show that the proposed method significantly outperforms state-of-the-art methods(up to 9.29%accuracy gain on the EmotionROI dataset)on IEC tasks with only a few trained parameters.The code is publicly available at https://github.com/dsn0w/PT-DPC/for research purposes.展开更多
The FAIR principles have been widely cited,endorsed and adopted by a broad range of stakeholders since their publication in 2016.By intention,the 15 FAIR guiding principles do not dictate specific technological implem...The FAIR principles have been widely cited,endorsed and adopted by a broad range of stakeholders since their publication in 2016.By intention,the 15 FAIR guiding principles do not dictate specific technological implementations,but provide guidance for improving Findability,Accessibility,Interoperability and Reusability of digital resources.This has likely contributed to the broad adoption of the FAIR principles,because individual stakeholder communities can implement their own FAIR solutions.However,it has also resulted in inconsistent interpretations that carry the risk of leading to incompatible implementations.Thus,while the FAIR principles are formulated on a high level and may be interpreted and implemented in different ways,for true interoperability we need to support convergence in implementation choices that are widely accessible and(re)-usable.We introduce the concept of FAIR implementation considerations to assist accelerated global participation and convergence towards accessible,robust,widespread and consistent FAIR implementations.Any self-identified stakeholder community may either choose to reuse solutions from existing implementations,or when they spot a gap,accept the challenge to create the needed solution,which,ideally,can be used again by other communities in the future.Here,we provide interpretations and implementation considerations(choices and challenges)for each FAIR principle.展开更多
基金supported by Fundo para o Desenvolvimento das Ciencias e da Tecnologia(FDCT)(119/2014/A3)。
文摘Data volume grows explosively with the proliferation of powerful smartphones and innovative mobile applications.The ability to accurately and extensively monitor and analyze these data is necessary.Much concern in cellular data analysis is related to human beings and their behaviours.Due to the potential value that lies behind these massive data,there have been different proposed approaches for understanding corresponding patterns.To that end,analyzing people's activities,e.g.,counting them at fixed locations and tracking them by generating origindestination matrices is crucial.The former can be used to determine the utilization of assets like roads and city attractions.The latter is valuable when planning transport infrastructure.Such insights allow a government to predict the adoption of new roads,new public transport routes,modification of existing infrastructure,and detection of congestion zones,resulting in more efficient designs and improvement.Smartphone data exploration can help research in various fields,e.g.,urban planning,transportation,health care,and business marketing.It can also help organizations in decision making,policy implementation,monitoring,and evaluation at all levels.This work aims to review the methods and techniques that have been implemented to discover knowledge from mobile phone data.We classify these existing methods and present a taxonomy of the related work by discussing their pros and cons.
文摘1.The problem The term'concussion'refers to a common form of traumatic brain injury,which typically occurs after a blow or injury to the head.It has been described as a'complex pathophysiological process affecting the brain,induced by biomechanical factors',and shear forces induced by rotational acceleration are believed to be the primary mechanism of injury in concussion.~1The incidence of concussion in the UK has been shown to be
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62106010,61976010,62176011,62236010.
文摘Image emotion classification(IEC)aims to extract the abstract emotions evoked in images.Recently,language-supervised methods such as con-trastive language-image pretraining(CLIP)have demonstrated superior performance in image under-standing.However,the underexplored task of IEC presents three major challenges:a tremendous training objective gap between pretraining and IEC,shared suboptimal prompts,and invariant prompts for all instances.In this study,we propose a general framework that effectively exploits the language-supervised CLIP method for the IEC task.First,a prompt-tuning method that mimics the pretraining objective of CLIP is introduced,to exploit the rich image and text semantics associated with CLIP.Subsequently,instance-specific prompts are automatically composed,conditioning them on the categories and image content of instances,diversifying the prompts,and thus avoiding suboptimal problems.Evaluations on six widely used affective datasets show that the proposed method significantly outperforms state-of-the-art methods(up to 9.29%accuracy gain on the EmotionROI dataset)on IEC tasks with only a few trained parameters.The code is publicly available at https://github.com/dsn0w/PT-DPC/for research purposes.
基金The work of A.Jacobsen,C.Evelo,M.Thompson,R.Cornet,R.Kaliyaperuma and M.Roos is supported by funding from the European Union’s Horizon 2020 research and innovation program under the EJP RD COFUND-EJP N°825575.The work of A.Jacobsen,C.Evelo,C.Goble,M.Thompson,N.Juty,R.Hooft,M.Roos,S-A.Sansone,P.McQuilton,P.Rocca-Serra and D.Batista is supported by funding from ELIXIR EXCELERATE,H2020 grant agreement number 676559.R.Hooft was further funded by NL NWO NRGWI.obrug.2018.009.N.Juty and C.Goble were funded by CORBEL(H2020 grant agreement 654248)N.Juty,C.Goble,S-A.Sansone,P.McQuilton,P.Rocca-Serra and D.Batista were funded by FAIRplus(IMI grant agreement 802750)+13 种基金N.Juty,C.Goble,M.Thompson,M.Roos,S-A.Sansone,P.McQuilton,P.Rocca-Serra and D.Batista were funded by EOSClife H2020-EU(grant agreement number 824087)C.Goble was funded by DMMCore(BBSRC BB/M013189/)M.Thompson,M.Roos received funding from NWO(VWData 400.17.605)S-A.Sansone,P.McQuilton,P.Rocca-Serra and D.Batista have been funded by grants awarded to S-A.Sansone from the UK BBSRC and Research Councils(BB/L024101/1,BB/L005069/1)EU(H2020-EU 634107H2020-EU 654241,IMI(IMPRiND 116060)NIH Data Common Fund,and from the Wellcome Trust(ISA-InterMine 212930/Z/18/ZFAIRsharing 208381/A/17/Z)The work of A.Waagmeester has been funded by grant award number GM089820 from the National Institutes of Health.M.Kersloot was funded by the European Regional Development Fund(KVW-00163).The work of N.Meyers was funded by the National Science Foundation(OAC 1839030)The work of M.D.Wilkinson is funded by Isaac Peral/Marie Curie cofund with the Universidad Politecnica de Madrid and the Ministerio de Economia y Competitividad grant number TIN2014-55993-RMThe work of B.Magagna,E.Schultes,L.da Silva Santos and K.Jeffery is funded by the H2020-EU 824068The work of B.Magagna,E.Schultes and L.da Silva Santos is funded by the GO FAIR ISCO grant of the Dutch Ministry of Science and CultureThe work of G.Guizzardi is supported by the OCEAN Project(FUB).M.Courtot received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No.802750.R.Cornet was further funded by FAIR4Health(H2020-EU grant agreement number 824666)K.Jeffery received funding from EPOS-IP H2020-EU agreement 676564 and ENVRIplus H2020-EU agreement 654182.
文摘The FAIR principles have been widely cited,endorsed and adopted by a broad range of stakeholders since their publication in 2016.By intention,the 15 FAIR guiding principles do not dictate specific technological implementations,but provide guidance for improving Findability,Accessibility,Interoperability and Reusability of digital resources.This has likely contributed to the broad adoption of the FAIR principles,because individual stakeholder communities can implement their own FAIR solutions.However,it has also resulted in inconsistent interpretations that carry the risk of leading to incompatible implementations.Thus,while the FAIR principles are formulated on a high level and may be interpreted and implemented in different ways,for true interoperability we need to support convergence in implementation choices that are widely accessible and(re)-usable.We introduce the concept of FAIR implementation considerations to assist accelerated global participation and convergence towards accessible,robust,widespread and consistent FAIR implementations.Any self-identified stakeholder community may either choose to reuse solutions from existing implementations,or when they spot a gap,accept the challenge to create the needed solution,which,ideally,can be used again by other communities in the future.Here,we provide interpretations and implementation considerations(choices and challenges)for each FAIR principle.