The ever-increasing environmental problems and energy challenges have called urgent demand for utilizing green,efficient,and sustainable energy,thus promoting the development of new technologies associated with energy...The ever-increasing environmental problems and energy challenges have called urgent demand for utilizing green,efficient,and sustainable energy,thus promoting the development of new technologies associated with energy storage and conversion systems.Amongst a wealth of energy storage devices,Li/Na/K/Zn/Mg ion batteries,metal-air batteries,and lithium-sulfur/all-solid-state batteries together with supercapacitors as advanced power sources have attracted considerable interest due to their conspicuous merits of high energy density,long cycle life,and good rate capability.展开更多
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r...Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.展开更多
Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.De...Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications.展开更多
Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new proces...Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new process of "hydrometallurgical treatment + hydrothermal synthesis" was investigated for the combined recovery of iron and organic materials from oily CRM sludge. Hydrometallurgical treatment, mainly including acid leaching, centrifugal separation, neutralization reaction, oxidizing, and preparation of hydrothermal reaction precursor, was first utilized for processing the sludge. Then, micaceous iron oxide (MIO) pigment powders were prepared through hydrothermal reaction of the obtained precursor in alkaline media. The separated organic materials can be used for fuel or chemical feedstock. The quality of the prepared MIO pigments is in accordance with the standards of MIO pigments for paints (ISO 10601-2007). This clean, effective, and economical technology offers a new way to recycle oily CRM sludge.展开更多
Nonreciprocity of thermal metamaterials has significant application prospects in isolation protection,unidirectional transmission,and energy harvesting.However,due to the inherent isotropic diffusion law of heat flow,...Nonreciprocity of thermal metamaterials has significant application prospects in isolation protection,unidirectional transmission,and energy harvesting.However,due to the inherent isotropic diffusion law of heat flow,it is extremely difficult to achieve nonreciprocity of heat transfer.This review presents the recent developments in thermal nonreciprocity and explores the fundamental theories,which underpin the design of nonreciprocal thermal metamaterials,i.e.,the Onsager reciprocity theorem.Next,three methods for achieving nonreciprocal metamaterials in the thermal field are elucidated,namely,nonlinearity,spatiotemporal modulation,and angular momentum bias,and the applications of nonreciprocal thermal metamaterials are outlined.We also discuss nonreciprocal thermal radiation.Moreover,the potential applications of nonreciprocity to other Laplacian physical fields are discussed.Finally,the prospects for advancing nonreciprocal thermal metamaterials are highlighted,including developments in device design and manufacturing techniques and machine learning-assisted material design.展开更多
Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this stu...Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this study,we propose an efficient design method for achromatic microlenses on a wavelength scale using materials with low dispersion,an adequately designed convex surface,and a thickness profile distribution.By taking into account the absolute chromatic aberration,relative focal length shift(FLS),and numerical aperture(NA),microlens with a certain focal length can be realized through our realized map of geometric features.Accordingly,the designed achromatic microlenses with low-dispersion fused silica were fabricated using a focused ion beam,and precise surface profiles were obtained.The fabricated microlenses exhibited a high average focusing efficiency of 65%at visible wavelengths of 410-680 nm and excellent achromatic capability via white light imaging.Moreover,the design exhibited the advantages of being polarization-insensitive and near-diffraction-limited.These results demonstrate the effectiveness of our proposed achromatic microlens design approach,which expands the prospects of miniaturized optics such as virtual and augmented reality,ultracompact microscopes,and biological endoscopy.展开更多
Aqueous zinc-ion batteries(AZIBs)show great potential for applications in grid-scale energy storage,given their intrinsic safety,cost effectiveness,environmental friendliness,and impressive electrochemical performance...Aqueous zinc-ion batteries(AZIBs)show great potential for applications in grid-scale energy storage,given their intrinsic safety,cost effectiveness,environmental friendliness,and impressive electrochemical performance.However,strong electrostatic interactions exist between zinc ions and host materials,and they hinder the development of advanced cathode materials for efficient,rapid,and stable Zn-ion storage.MXenes and their derivatives possess a large interlayer spacing,excellent hydrophilicity,outstanding electronic conductivity,and high redox activity.These materials are considered“rising star”cathode candidates for AZIBs.This comprehensive review discusses recent advances in MXenes as AZIB cathodes from the perspectives of crystal structure,Zn-storage mechanism,surface modification,interlayer engineering,and conductive network design to elucidate the correlations among their composition,structure,and electrochemical performance.This work also outlines the remaining challenges faced by MXenes for aqueous Zn-ion storage,such as the urgent need for improved toxic preparation methods,exploration of potential novel MXene cathodes,and suppression of layered MXene restacking upon cycling,and introduces the prospects of MXene-based cathode materials for high-performance AZIBs.展开更多
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli...Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.展开更多
Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p...Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.展开更多
Simultaneously achieving high strength and high electrical conductivity in Cu–Ni–Si alloys pose a significant challenge, which greatly constrains its applications in the electronics industry. This paper offers a new...Simultaneously achieving high strength and high electrical conductivity in Cu–Ni–Si alloys pose a significant challenge, which greatly constrains its applications in the electronics industry. This paper offers a new pathway to improve properties, by preparation of nanometer lamellar discontinuous precipitates(DPs) arranged with the approximate same direction through a combination of deformationaging and cold rolling process. The strengthening effect is primarily attributed to nanometer-lamellar DPs strengthening and dislocation strengthening mechanism. The accumulation of dislocations at the interface between nanometer lamellar DPs and matrix during cold deformation process can results in the decrease of dislocation density inside the matrix grains, leading to the acceptably slight reduction of electrical conductivity during cold rolling. The alloy exhibits an electrical conductivity of 45.32%IACS(international annealed copper standard, IACS), a tensile strength of 882.67 MPa, and a yield strength of 811.33 MPa by this method. This study can provide a guidance for the composition and microstructure design of a Cu–Ni–Si alloy in the future, by controlling the morphology and distribution of DPs.展开更多
A new horizontal continuous casting method with heating-cooling combined mold (HCCM) technology was explored for fabri- cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes. The microst...A new horizontal continuous casting method with heating-cooling combined mold (HCCM) technology was explored for fabri- cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes. The microstructure and mechanical properties of BFe 10 cupronickel alloy tubes fabricated by HCCM and traditional continuous casting (cooling mold casting) were comparatively investigated. The results show that the tube fabricated by HCCM has smooth internal and external surfaces without any defects, and its internal and external surface roughnesses are 0.64 μm and 0.85 μm, respectively. The tube could be used for subsequent cold processing without other treatments such as surface planning, milling and acid-washing. This indicates that HCCM can effectively reduce the process flow and improve the pro- duction efficiency of a BFel0 cupronickel alloy tube. The tube has columnar grains along its axial direction with a major casting texture of {012}〈 621 〉. Compared with cooling mold casting (6 = 36.5%), HCCM can improve elongation (3 = 46.3%) by 10% with a slight loss of strength, which indicates that HCCM remarkably improves the cold extension performance of a BFe 10 cupronickel alloy tube.展开更多
Sodium-ion batteries(SIBs)have been considered as an ideal choice for the next generation large-scale energy storage applications owing to the rich sodium resources and the analogous working principle to that of lithi...Sodium-ion batteries(SIBs)have been considered as an ideal choice for the next generation large-scale energy storage applications owing to the rich sodium resources and the analogous working principle to that of lithium-ion batteries(LIBs).Nevertheless,the larger size and heavier mass of Na^(+)ion than those of Li^(+)ion often lead to sluggish reaction kinetics and inferior cycling life in SIBs compared to the LIB counterparts.The pursuit of promising electrode materials that can accommodate the rapid and stable Na-ion insertion/extraction is the key to promoting the development of SIBs toward a commercial prosperity.One-dimensional(1 D)nanomaterials demonstrate great prospects in boosting the rate and cycling performances because of their large active surface areas,high endurance for deformation stress,short ions diffusion channels,and oriented electrons transfer paths.Electrospinning,as a versatile synthetic technology,features the advantages of controllable preparation,easy operation,and mass production,has been widely applied to fabricate the 1 D nanostructured electrode materials for SIBs.In this review,we comprehensively summarize the recent advances in the sodium-storage cathode and anode materials prepared by electrospinning,discuss the effects of modulating the spinning parameters on the materials’micro/nano-structures,and elucidate the structure-performance correlations of the tailored electrodes.Finally,the future directions to harvest more breakthroughs in electrospun Na-storage materials are pointed out.展开更多
The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%-50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additi...The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%-50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additionally, the friction and wear behaviors as well as the wear mechanism of the Cu-based composites were characterized by scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS) elemental mapping. The results indicated that the Cu-based friction composite containing 30wt% ODS Cu exhibited the highest hardness and shear strength. The average and instantaneous friction coefficient curves of this sample, when operated in a high-speed train at a speed of 300 km/h, were similar to those of a commercial disc brake pad produced by Knorr-Bremse AG (Germany). Additionally, the lowest linear wear loss of the obtained samples was (0.008 ± 0.001) mm per time per face, which is much lower than that of the Knorr-Bremse pad ((0.01 ± 0.001) mm). The excellent performance of the developed pad is a consequence of the formation of a dense oxide composite layer and its close combination with the pad body.展开更多
Machine-learning and big data are among the latest approaches in corrosion research.The biggest challenge in corrosion research is to accurately predict how materials will degrade in a given environment.Corrosion big ...Machine-learning and big data are among the latest approaches in corrosion research.The biggest challenge in corrosion research is to accurately predict how materials will degrade in a given environment.Corrosion big data is the application of mathematical methods to huge amounts of data to find correlations and infer probabilities.It is possible to use corrosion big data method to distinguish the influence of the minimal changes of alloying elements and small differences in microstructure on corrosion resistance of low alloy steels.In this research,corrosion big data evaluation methods and machine learning were used to study the effect of Sb and Sn,as well as environmental factors on the corrosion behavior of low alloy steels.Results depict corrosion big data method can accurately identify the influence of various factors on corrosion resistance of low alloy and is an effective and promising way in corrosion research.展开更多
The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.1,0.15,0.2)alloys were prepared via melt spinning.The analyses of the X-ray diffraction(XRD)and scanning electron microscopy(SEM)proved that...The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.1,0.15,0.2)alloys were prepared via melt spinning.The analyses of the X-ray diffraction(XRD)and scanning electron microscopy(SEM)proved that the experimental alloys contain the main phase LaMgNi4 and the second phase LaNi5.Increasing Y content and spinning rate lead to grain refinement and obvious change of the phase abundance without changing phase composition.Y substitution for La and melt spinning make the life-span of the alloys improved remarkably,which is attributed to the improvement of anti-oxidation,anti-pulverization and anti-corrosion abilities.In addition,the discharge capacity visibly decreases with increasing the Y content,while it firstly increases and then decreases with increasing spinning rate.The electrochemical kinetics increases to the optimum performance and then reduces with increasing spinning rate.Moreover,all the alloys achieve to the highest discharge capacities just at the initial cycle without activation.展开更多
Metal corrosion causes significant economic losses,safety issues,and environmental pollution.Hence,its prevention is of immense research interest.Carbon dots(CDs)are a new class of zero-dimensional carbon nanomaterial...Metal corrosion causes significant economic losses,safety issues,and environmental pollution.Hence,its prevention is of immense research interest.Carbon dots(CDs)are a new class of zero-dimensional carbon nanomaterials,which have been considered for corrosion protection applications in recent years due to their corrosion inhibition effect,fluorescence,low toxicity,facile chemical modification,and cost-effectiveness.This study provides a comprehensive overview of the synthesis,physical and chemical properties,and anticorrosion mechanisms of functionalized CDs.First,the corrosion inhibition performance of different types of CDs is introduced,followed by discussion on their application in the development of smart protective coatings with self-healing and/or self-reporting properties.The effective barrier formed by CDs in the coatings can inhibit the spread of local damage and achieve self-healing behavior.In addition,diverse functional groups on CDs can interact with Fe^(3+)and H^(+)ions generated during the corrosion process;this interaction changes their fluorescence,thereby demonstrating self-reporting behavior.Moreover,challenges and prospects for the development of CD-based corrosion protection systems are also presented.展开更多
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi...Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.展开更多
Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re...Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.展开更多
Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)ar...Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science.展开更多
文摘The ever-increasing environmental problems and energy challenges have called urgent demand for utilizing green,efficient,and sustainable energy,thus promoting the development of new technologies associated with energy storage and conversion systems.Amongst a wealth of energy storage devices,Li/Na/K/Zn/Mg ion batteries,metal-air batteries,and lithium-sulfur/all-solid-state batteries together with supercapacitors as advanced power sources have attracted considerable interest due to their conspicuous merits of high energy density,long cycle life,and good rate capability.
基金financially supported by the National Natural Science Foundation of China (Nos.U2002212,52102058,52204414,52204413,and 52204412)the National Key R&D Program of China (Nos.2021YFC1910504,2019YFC1907101,2019YFC1907103,and 2017YFB0702304)+7 种基金the Key R&D Program of Ningxia Hui Autonomous Region,China (Nos.2021BEG01003 and2020BCE01001)the Xijiang Innovation and Entrepreneurship Team,China (No.2017A0109004)the Macao Young Scholars Program (No.AM2022024),Chinathe Beijing Natural Science Foundation (Nos.L212020 and 2214073),Chinathe Guangdong Basic and Applied Basic Research Foundation,China (Nos.2021A1515110998 and 2020A1515110408)the China Postdoctoral Science Foundation (No.2022M710349)the Fundamental Research Funds for the Central Universities,China (Nos.FRF-BD-20-24A,FRF-TP-20-031A1,FRF-IC-19-017Z,and 06500141)the Integration of Green Key Process Systems MIIT and Scientific and Technological Innovation Foundation of Foshan,China(Nos.BK22BE001 and BK21BE002)。
文摘Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.
基金National Natural Science Foundation of China,Grant/Award Number:52271200Scientific and Technological Innovation Foundation of Foshan,Grant/Award Number:BK20BE009+1 种基金the Fundamental Research Funds for the Central Universities,Grant/Award Number:FRF-TP-18-079A1Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110460,ORCID:http://orcid.org/0000-0002-0870-2248。
文摘Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications.
基金financially supported by the National Key Technology R&D Program of China (Nos.2012BAC02B01,2012BAC12B05,2011BAE13B07,and 2011BAC10B02)the National High-Tech Research and Development Program of China (No.2012AA063202)+2 种基金the National Natural Science Foundation of China (Nos.51174247 and 51004011)the Science and Technology Program of Guangdong Province,China (No.2010A030200003)the Ph.D. Programs Foundation of the Ministry of Education of China (No.2010000612003)
文摘Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new process of "hydrometallurgical treatment + hydrothermal synthesis" was investigated for the combined recovery of iron and organic materials from oily CRM sludge. Hydrometallurgical treatment, mainly including acid leaching, centrifugal separation, neutralization reaction, oxidizing, and preparation of hydrothermal reaction precursor, was first utilized for processing the sludge. Then, micaceous iron oxide (MIO) pigment powders were prepared through hydrothermal reaction of the obtained precursor in alkaline media. The separated organic materials can be used for fuel or chemical feedstock. The quality of the prepared MIO pigments is in accordance with the standards of MIO pigments for paints (ISO 10601-2007). This clean, effective, and economical technology offers a new way to recycle oily CRM sludge.
基金the National Natural Science Foundation of China(No.52325208)the Fundamental Research Funds for the Central Universities(No.06500174)National Key Research and Development Program of China(No.2022YFB3807401)。
文摘Nonreciprocity of thermal metamaterials has significant application prospects in isolation protection,unidirectional transmission,and energy harvesting.However,due to the inherent isotropic diffusion law of heat flow,it is extremely difficult to achieve nonreciprocity of heat transfer.This review presents the recent developments in thermal nonreciprocity and explores the fundamental theories,which underpin the design of nonreciprocal thermal metamaterials,i.e.,the Onsager reciprocity theorem.Next,three methods for achieving nonreciprocal metamaterials in the thermal field are elucidated,namely,nonlinearity,spatiotemporal modulation,and angular momentum bias,and the applications of nonreciprocal thermal metamaterials are outlined.We also discuss nonreciprocal thermal radiation.Moreover,the potential applications of nonreciprocity to other Laplacian physical fields are discussed.Finally,the prospects for advancing nonreciprocal thermal metamaterials are highlighted,including developments in device design and manufacturing techniques and machine learning-assisted material design.
基金supported by grants from the National Key Research and Development Program of China(2022YFB3806000)the National Natural Science Foundation of China(52325208 and 11974203)the Beijing Municipal Science and Technology Project(Z191100004819002).
文摘Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this study,we propose an efficient design method for achromatic microlenses on a wavelength scale using materials with low dispersion,an adequately designed convex surface,and a thickness profile distribution.By taking into account the absolute chromatic aberration,relative focal length shift(FLS),and numerical aperture(NA),microlens with a certain focal length can be realized through our realized map of geometric features.Accordingly,the designed achromatic microlenses with low-dispersion fused silica were fabricated using a focused ion beam,and precise surface profiles were obtained.The fabricated microlenses exhibited a high average focusing efficiency of 65%at visible wavelengths of 410-680 nm and excellent achromatic capability via white light imaging.Moreover,the design exhibited the advantages of being polarization-insensitive and near-diffraction-limited.These results demonstrate the effectiveness of our proposed achromatic microlens design approach,which expands the prospects of miniaturized optics such as virtual and augmented reality,ultracompact microscopes,and biological endoscopy.
基金the National Natural Science Foundation of China(Nos.52372171,22075016,and 52201201)the National Program for Support of Top-notch Young Professionals,China+3 种基金the Interdisciplinary Research Project for Young Teachers of University of Science and Technology Beijing,China(No.FRF-IDRY-21-011)the State Key Laboratory for Advanced Metals and Materials,China(No.2022Z-17)the Ministry of Education Social Science Project,China(No.18YJC790087)the“Xiaomi Young Scholar”Funding Project,China,and the 111 Project,China(No.B170003)。
文摘Aqueous zinc-ion batteries(AZIBs)show great potential for applications in grid-scale energy storage,given their intrinsic safety,cost effectiveness,environmental friendliness,and impressive electrochemical performance.However,strong electrostatic interactions exist between zinc ions and host materials,and they hinder the development of advanced cathode materials for efficient,rapid,and stable Zn-ion storage.MXenes and their derivatives possess a large interlayer spacing,excellent hydrophilicity,outstanding electronic conductivity,and high redox activity.These materials are considered“rising star”cathode candidates for AZIBs.This comprehensive review discusses recent advances in MXenes as AZIB cathodes from the perspectives of crystal structure,Zn-storage mechanism,surface modification,interlayer engineering,and conductive network design to elucidate the correlations among their composition,structure,and electrochemical performance.This work also outlines the remaining challenges faced by MXenes for aqueous Zn-ion storage,such as the urgent need for improved toxic preparation methods,exploration of potential novel MXene cathodes,and suppression of layered MXene restacking upon cycling,and introduces the prospects of MXene-based cathode materials for high-performance AZIBs.
基金supported by the National Key R&D Program of China(No.2022YFE0121300)the Introduction Plan for High end Foreign Experts,China(No.G2023105001L)the Young Foreign Talent Program,China(No.QN2023105001L).
文摘Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.
基金financial support by National Natural Science Foundation(NNSF)of China(Nos.52202269,52002248,U23B2069,22309162)Shenzhen Science and Technology program(No.20220810155330003)+1 种基金Shenzhen Basic Research Project(No.JCYJ20190808163005631)Xiangjiang Lab(22XJ01007).
文摘Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.
基金supported by the National Key Research and Development Program of China (No. 2023YFB3812601)the National Natural Science Founda tion of China (Nos. 51925401, 92066205, and 92266301)。
文摘Simultaneously achieving high strength and high electrical conductivity in Cu–Ni–Si alloys pose a significant challenge, which greatly constrains its applications in the electronics industry. This paper offers a new pathway to improve properties, by preparation of nanometer lamellar discontinuous precipitates(DPs) arranged with the approximate same direction through a combination of deformationaging and cold rolling process. The strengthening effect is primarily attributed to nanometer-lamellar DPs strengthening and dislocation strengthening mechanism. The accumulation of dislocations at the interface between nanometer lamellar DPs and matrix during cold deformation process can results in the decrease of dislocation density inside the matrix grains, leading to the acceptably slight reduction of electrical conductivity during cold rolling. The alloy exhibits an electrical conductivity of 45.32%IACS(international annealed copper standard, IACS), a tensile strength of 882.67 MPa, and a yield strength of 811.33 MPa by this method. This study can provide a guidance for the composition and microstructure design of a Cu–Ni–Si alloy in the future, by controlling the morphology and distribution of DPs.
基金supported by the National High Technology Research and Development Program of China (No.2011BAE23B00)
文摘A new horizontal continuous casting method with heating-cooling combined mold (HCCM) technology was explored for fabri- cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes. The microstructure and mechanical properties of BFe 10 cupronickel alloy tubes fabricated by HCCM and traditional continuous casting (cooling mold casting) were comparatively investigated. The results show that the tube fabricated by HCCM has smooth internal and external surfaces without any defects, and its internal and external surface roughnesses are 0.64 μm and 0.85 μm, respectively. The tube could be used for subsequent cold processing without other treatments such as surface planning, milling and acid-washing. This indicates that HCCM can effectively reduce the process flow and improve the pro- duction efficiency of a BFel0 cupronickel alloy tube. The tube has columnar grains along its axial direction with a major casting texture of {012}〈 621 〉. Compared with cooling mold casting (6 = 36.5%), HCCM can improve elongation (3 = 46.3%) by 10% with a slight loss of strength, which indicates that HCCM remarkably improves the cold extension performance of a BFe 10 cupronickel alloy tube.
基金Financial support from the National Natural Science Foundation of China(21805007)Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)+3 种基金Beijing Natural Science Foundation(L182019)National Key Research and Development Program of China(2018YFB0104300)Fundamental Research Funds for the Central Universities(FRF-TP-19-029A2)111 Project(B12015)。
文摘Sodium-ion batteries(SIBs)have been considered as an ideal choice for the next generation large-scale energy storage applications owing to the rich sodium resources and the analogous working principle to that of lithium-ion batteries(LIBs).Nevertheless,the larger size and heavier mass of Na^(+)ion than those of Li^(+)ion often lead to sluggish reaction kinetics and inferior cycling life in SIBs compared to the LIB counterparts.The pursuit of promising electrode materials that can accommodate the rapid and stable Na-ion insertion/extraction is the key to promoting the development of SIBs toward a commercial prosperity.One-dimensional(1 D)nanomaterials demonstrate great prospects in boosting the rate and cycling performances because of their large active surface areas,high endurance for deformation stress,short ions diffusion channels,and oriented electrons transfer paths.Electrospinning,as a versatile synthetic technology,features the advantages of controllable preparation,easy operation,and mass production,has been widely applied to fabricate the 1 D nanostructured electrode materials for SIBs.In this review,we comprehensively summarize the recent advances in the sodium-storage cathode and anode materials prepared by electrospinning,discuss the effects of modulating the spinning parameters on the materials’micro/nano-structures,and elucidate the structure-performance correlations of the tailored electrodes.Finally,the future directions to harvest more breakthroughs in electrospun Na-storage materials are pointed out.
基金financially supported by the National High Technology Research and Development Program of China (No. 2013AA031104)
文摘The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%-50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additionally, the friction and wear behaviors as well as the wear mechanism of the Cu-based composites were characterized by scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS) elemental mapping. The results indicated that the Cu-based friction composite containing 30wt% ODS Cu exhibited the highest hardness and shear strength. The average and instantaneous friction coefficient curves of this sample, when operated in a high-speed train at a speed of 300 km/h, were similar to those of a commercial disc brake pad produced by Knorr-Bremse AG (Germany). Additionally, the lowest linear wear loss of the obtained samples was (0.008 ± 0.001) mm per time per face, which is much lower than that of the Knorr-Bremse pad ((0.01 ± 0.001) mm). The excellent performance of the developed pad is a consequence of the formation of a dense oxide composite layer and its close combination with the pad body.
基金financially supported by the Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing(No.2022 B H003)。
文摘Machine-learning and big data are among the latest approaches in corrosion research.The biggest challenge in corrosion research is to accurately predict how materials will degrade in a given environment.Corrosion big data is the application of mathematical methods to huge amounts of data to find correlations and infer probabilities.It is possible to use corrosion big data method to distinguish the influence of the minimal changes of alloying elements and small differences in microstructure on corrosion resistance of low alloy steels.In this research,corrosion big data evaluation methods and machine learning were used to study the effect of Sb and Sn,as well as environmental factors on the corrosion behavior of low alloy steels.Results depict corrosion big data method can accurately identify the influence of various factors on corrosion resistance of low alloy and is an effective and promising way in corrosion research.
基金Projects(51761032,51471054)supported by the National Natural Science Foundation of ChinaProject(2015MS0558)supported by the Natural Science Foundation of Inner Mongolia,China
文摘The La-Mg-Ni-Co-Al-based AB2-type La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.1,0.15,0.2)alloys were prepared via melt spinning.The analyses of the X-ray diffraction(XRD)and scanning electron microscopy(SEM)proved that the experimental alloys contain the main phase LaMgNi4 and the second phase LaNi5.Increasing Y content and spinning rate lead to grain refinement and obvious change of the phase abundance without changing phase composition.Y substitution for La and melt spinning make the life-span of the alloys improved remarkably,which is attributed to the improvement of anti-oxidation,anti-pulverization and anti-corrosion abilities.In addition,the discharge capacity visibly decreases with increasing the Y content,while it firstly increases and then decreases with increasing spinning rate.The electrochemical kinetics increases to the optimum performance and then reduces with increasing spinning rate.Moreover,all the alloys achieve to the highest discharge capacities just at the initial cycle without activation.
基金financially supported by the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(No.2021FY100603)the Fundamental Research Funds for the Central Universities(No.FRF-BD-20-28A2)。
文摘Metal corrosion causes significant economic losses,safety issues,and environmental pollution.Hence,its prevention is of immense research interest.Carbon dots(CDs)are a new class of zero-dimensional carbon nanomaterials,which have been considered for corrosion protection applications in recent years due to their corrosion inhibition effect,fluorescence,low toxicity,facile chemical modification,and cost-effectiveness.This study provides a comprehensive overview of the synthesis,physical and chemical properties,and anticorrosion mechanisms of functionalized CDs.First,the corrosion inhibition performance of different types of CDs is introduced,followed by discussion on their application in the development of smart protective coatings with self-healing and/or self-reporting properties.The effective barrier formed by CDs in the coatings can inhibit the spread of local damage and achieve self-healing behavior.In addition,diverse functional groups on CDs can interact with Fe^(3+)and H^(+)ions generated during the corrosion process;this interaction changes their fluorescence,thereby demonstrating self-reporting behavior.Moreover,challenges and prospects for the development of CD-based corrosion protection systems are also presented.
基金financially supported by the National Key Research and Development Program of China(2022YFB4600302)National Natural Science Foundation of China(52090041)+1 种基金National Natural Science Foundation of China(52104368)National Major Science and Technology Projects of China(J2019-VII-0010-0150)。
文摘Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.
基金the financial support from the National Natural Science Foundation of China (Grant Nos. 52201201, 52372171)the State Key Lab of Advanced Metals and Materials (Grant No. 2022Z-11)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 00007747, 06500205)the Initiative Postdocs Supporting Program (Grant No. BX20190002)。
文摘Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.
基金the National Natural Science Foundation of China(No.52125102)the National Key Research and Development Program of China(No.2021YFB4000101)Fundamental Research Funds for t he Central Universities(No.FRF-TP-2021-02C2)。
文摘Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science.