Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi...Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi-or hyperspectral image segmentation.Our batch active learning approach selects a collection of unlabeled pixels that satisfy a graph local maximum constraint for the active learning acquisition function that determines the relative importance of each pixel to the classification.This work builds on recent advances in the design of novel active learning acquisition functions(e.g.,the Model Change approach in arXiv:2110.07739)while adding important further developments including patch-neighborhood image analysis and batch active learning methods to further increase the accuracy and greatly increase the computational efficiency of these methods.In addition to improvements in the accuracy,our approach can greatly reduce the number of labeled pixels needed to achieve the same level of the accuracy based on randomly selected labeled pixels.展开更多
This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structu...This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structures,are employed to discretize the physical unknowns in the boundary integral formulations of the governing equations.Bezier extraction technique is employed to accelerate the evaluation of NURBS basis functions.We adopt a radial integration method to address the additional domain integrals.The numerical examples demonstrate the advantage of IGABEM in dimension reduction and the seamless connection between CAD and numerical analysis.展开更多
We present two approaches to system identification, i.e. the identification of partial differentialequations (PDEs) from measurement data. The first is a regression-based variational systemidentification procedure tha...We present two approaches to system identification, i.e. the identification of partial differentialequations (PDEs) from measurement data. The first is a regression-based variational systemidentification procedure that is advantageous in not requiring repeated forward model solves andhas good scalability to large number of differential operators. However it has strict data typerequirements needing the ability to directly represent the operators through the available data.The second is a Bayesian inference framework highly valuable for providing uncertaintyquantification, and flexible for accommodating sparse and noisy data that may also be indirectquantities of interest. However, it also requires repeated forward solutions of the PDE modelswhich is expensive and hinders scalability. We provide illustrations of results on a model problemfor pattern formation dynamics, and discuss merits of the presented methods.展开更多
We present a framework that couples a high-fidelity compositional reservoir simulator with Bayesian optimization(BO)for injection well scheduling optimization in geological carbon sequestration.This work represents on...We present a framework that couples a high-fidelity compositional reservoir simulator with Bayesian optimization(BO)for injection well scheduling optimization in geological carbon sequestration.This work represents one of the first at tempts to apply BO and high-fidelity physics models to geological carbon storage.The implicit parallel accurate reservoir simulator(IPARS)is utilized to accurately capture the underlying physical processes during CO_(2)sequestration.IPARS provides a framework for several flow and mechanics models and thus supports both stand-alone and coupled simulations.In this work,we use the compositional flow module to simulate the geological carbon storage process.The compositional flow model,which includes a hysteretic three-phase relative permeability model,accounts for three major CO_(2)trapping mechanisms:structural trapping,residual gas trapping,and solubility trapping.Furthermore,IPARS is coupled to the International Business Machines(IBM)Corporation Bayesian Optimization Accelerator(BOA)for parallel optimizations of CO_(2)injection strategies during field-scale CO_(2)sequestration.BO builds a probabilistic surrogate for the objective function using a Bayesian machine learning algorithm-the Gaussian process regression,and then uses an acquisition function that leverages the uncertainty in the surrogate to decide where to sample.The IBM BOA addresses the three weaknesses of standard BO that limits its scalability in that IBM BOA supports parallel(batch)executions,scales better for high-dimensional problems,and is more robust to initializations.We demonstrate these merits by applying the algorithm in the optimization of the CO_(2)injection schedule in the Cranfield site in Mississippi,USA,using field data.The optimized injection schedule achieves 16%more gas storage volume and 56%less water/surfactant usage compared with the baseline.The performance of BO is compared with that of a genetic algorithm(GA)and a covariance matrix adaptation(CMA)-evolution strategy(ES).The results demonstrate the superior performance of BO,in that it achieves a competitive objective function value with over 60%fewer forward model evaluations.展开更多
The Burgers' equation with uncertain initial and boundary conditions is approximated using a Polynomial Chaos Expansion (PCE) approach where the solution is represented as a series of stochastic, orthogonal polynom...The Burgers' equation with uncertain initial and boundary conditions is approximated using a Polynomial Chaos Expansion (PCE) approach where the solution is represented as a series of stochastic, orthogonal polynomials. The resulting truncated PCE system is solved using a novel numerical discretization method based on spatial derivative operators satisfying the summation by parts property and weak boundary conditions to ensure stability. The resulting PCE solution yields an accurate quantitative description of the stochastic evolution of the system, provided that appropriate boundary conditions are available. The specification of the boundary data is shown to influence the solution; we will discuss the problematic implications of the lack of precisely characterized boundary data and possible ways of imposing stable and accurate boundary conditions.展开更多
We investigate primal and mixed u−p isogeometric collocation methods for application to nearly-incompressible isotropic elasticity.The primal method employs Navier’s equations in terms of the displacement unknowns,an...We investigate primal and mixed u−p isogeometric collocation methods for application to nearly-incompressible isotropic elasticity.The primal method employs Navier’s equations in terms of the displacement unknowns,and the mixed method employs both displacement and pressure unknowns.As benchmarks for what might be considered acceptable accuracy,we employ constant-pressure Abaqus finite elements that are widely used in engineering applications.As a basis of comparisons,we present results for compressible elasticity.All the methods were completely satisfactory for the compressible case.However,results for low-degree primal methods exhibited displacement locking and in general deteriorated in the nearly-incompressible case.The results for the mixed methods behaved very well for two of the problems we studied,achieving levels of accuracy very similar to those for the compressible case.The third problem,which we consider a“torture test”presented a more complex story for the mixed methods in the nearly-incompressible case.展开更多
During April 20-22,2022,colleagues and friends gathered at the Institute of Pure&Applied Mathematics(IPAM),at the University of California at Los Angeles to celebrate Professor Stanley Osher's 8Oth birthday in...During April 20-22,2022,colleagues and friends gathered at the Institute of Pure&Applied Mathematics(IPAM),at the University of California at Los Angeles to celebrate Professor Stanley Osher's 8Oth birthday in a conference focusing on recent developments in"Optimization,Shape analysis,High-dimensional differential equations in science and Engineering,and machine learning Research(OSHER)"This conference hosted in-person talks by mathematicians,scientists,and industrial professionals worldwide.Those who could not attend extended their warm regards and expressed their appreciation for Professor Osher.展开更多
Isogeometric analysis (IGA) is known to showadvanced features compared to traditional finite element approaches.Using IGA one may accurately obtain the geometrically nonlinear bending behavior of plates with functiona...Isogeometric analysis (IGA) is known to showadvanced features compared to traditional finite element approaches.Using IGA one may accurately obtain the geometrically nonlinear bending behavior of plates with functionalgrading (FG). However, the procedure is usually complex and often is time-consuming. We thus put forward adeep learning method to model the geometrically nonlinear bending behavior of FG plates, bypassing the complexIGA simulation process. A long bidirectional short-term memory (BLSTM) recurrent neural network is trainedusing the load and gradient index as inputs and the displacement responses as outputs. The nonlinear relationshipbetween the outputs and the inputs is constructed usingmachine learning so that the displacements can be directlyestimated by the deep learning network. To provide enough training data, we use S-FSDT Von-Karman IGA andobtain the displacement responses for different loads and gradient indexes. Results show that the recognition erroris low, and demonstrate the feasibility of deep learning technique as a fast and accurate alternative to IGA formodeling the geometrically nonlinear bending behavior of FG plates.展开更多
We propose a new framework for the sampling,compression,and analysis of distributions of point sets and other geometric objects embedded in Euclidean spaces.Our approach involves constructing a tensor called the RaySe...We propose a new framework for the sampling,compression,and analysis of distributions of point sets and other geometric objects embedded in Euclidean spaces.Our approach involves constructing a tensor called the RaySense sketch,which captures nearest neighbors from the underlying geometry of points along a set of rays.We explore various operations that can be performed on the RaySense sketch,leading to different properties and potential applications.Statistical information about the data set can be extracted from the sketch,independent of the ray set.Line integrals on point sets can be efficiently computed using the sketch.We also present several examples illustrating applications of the proposed strategy in practical scenarios.展开更多
The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral ...The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.展开更多
This paper proposes a novel optimization framework in passive control techniques to reduce noise pollution.The geometries of the structures are represented by Catmull-Clark subdivision surfaces,which are able to build...This paper proposes a novel optimization framework in passive control techniques to reduce noise pollution.The geometries of the structures are represented by Catmull-Clark subdivision surfaces,which are able to build gap-free Computer-Aided Design models and meanwhile tackle the extraordinary points that are commonly encountered in geometricmodelling.The acoustic fields are simulated using the isogeometric boundary elementmethod,and a density-based topology optimization is conducted to optimize distribution of sound-absorbing materials adhered to structural surfaces.The approach enables one to perform acoustic optimization from Computer-Aided Design models directly without needingmeshing and volume parameterization,thereby avoiding the geometric errors and time-consuming preprocessing steps in conventional simulation and optimization methods.The effectiveness of the present method is demonstrated by three dimensional numerical examples.展开更多
Potential damage in composite structures caused by hail ice impact is an essential safety threat to the aircraft in flight.In this study,a nonlinear finite element(FE)model is developed to investigate the dynamic resp...Potential damage in composite structures caused by hail ice impact is an essential safety threat to the aircraft in flight.In this study,a nonlinear finite element(FE)model is developed to investigate the dynamic response and damage behavior of hybrid corrugated sandwich structures subjected to high velocity hail ice impact.The impact and breaking behavior of hail are described using the FE-smoothed particle hydrodynamics(FE-SPH)method.A rate-dependent progressive damage model is employed to capture the intra-laminar damage response;cohesive element and surface-based cohesive contact are implemented to predict the inter-laminar delamination and sheet/core debonding phenomena respectively.The transient processes of sandwich structure under different hail ice impact conditions are analyzed.Comparative analysis is conducted to address the influences of core shape and impact position on the impact performance of sandwich structures and the corresponding energy absorption characteristics are also revealed.展开更多
Anti-plane deformation of square lattices containing interphases is analyzed. It is assumed that lattices are linear elastic but not necessarily isotropic, whereas interphases exhibit non-linear elastic behavior. It i...Anti-plane deformation of square lattices containing interphases is analyzed. It is assumed that lattices are linear elastic but not necessarily isotropic, whereas interphases exhibit non-linear elastic behavior. It is demonstrated that such problems can be treated effectively using Green's functions, which allow to eliminate the degrees of freedom outside of the interphase. Illustrative numerical examples focus on the determination of applied stresses leading to lattice instability.展开更多
Light-induced ultrafast spin dynamics in materials is of great importance for developments of spintronics and magnetic storage technology.Recent progresses include ultrafast demagnetization,magnetic switching,and magn...Light-induced ultrafast spin dynamics in materials is of great importance for developments of spintronics and magnetic storage technology.Recent progresses include ultrafast demagnetization,magnetic switching,and magnetic phase transitions,while the ultrafast generation of magnetism is hardly achieved.Here,a strong lightinduced magnetization(up to 0.86μBper formula unit)is identified in non-magnetic monolayer molybdenum disulfide(MoS_(2)).With the state-of-the-art time-dependent density functional theory simulations,we demonstrate that the out-of-plane magnetization can be induced by circularly polarized laser,where chiral phonons play a vital role.The phonons strongly modulate spin-orbital interactions and promote electronic transitions between the two conduction band states,achieving an effective magnetic field~380 T.Our study provides important insights into the ultrafast magnetization and spin-phonon coupling dynamics,facilitating effective light-controlled valleytronics and magnetism.展开更多
The objective of this paper is to investigate water supercooling. Supercooling occurs when a liquid does not freeze although its temperature is below its freezing point. In general, supercooling is an unstable conditi...The objective of this paper is to investigate water supercooling. Supercooling occurs when a liquid does not freeze although its temperature is below its freezing point. In general, supercooling is an unstable condition and occurs under special conditions. The parameters that influence supercooling stability and probability of occurrence include freezer temperature and water’s initial temperature. In this paper, it is shown that with a freezer temperature range of -3℃ to -8℃, supercooling is most likely to happen and is independent of the water’s initial temperature. Furthermore, as the freezer temperature decreases, the probability of nucleation increases, causing instant freezing. Finally, it is concluded that the Mpemba effect, in which initially hot water freezes faster than initially cold water, is due to the supercooling instability in initially hot water in which nucleation agents are more active.展开更多
Developing efficient platinum-based electrocatalysts with super durability for the oxygen reduction reaction(ORR)is highly desirable to promote the large-scale commercialization of fuel cells.Although progress has bee...Developing efficient platinum-based electrocatalysts with super durability for the oxygen reduction reaction(ORR)is highly desirable to promote the large-scale commercialization of fuel cells.Although progress has been made in this aspect,the electrochemical kinetics and stability of platinum-based catalysts are still far from the requirements of the practical applications.Herein,PtPdFeCoNi high-entropy alloy(HEA)nanoparticles were demonstrated via a high-temperature injection method.PtPdFeCoNi HEA nanocatalyst exhibits outstanding catalytic activity and stability towards ORR due to the high entropy,lattice distortion,and sluggish diffusion effects of HEA,and the HEA nanoparticles delivered a mass activity of 1.23 A/mgPt and a specific activity of 1.80 mA/cmPt 2,which enhanced by 6.2 and 4.9 times,respectively,compared with the values of the commercial Pt/C catalyst.More importantly,the high durability of PtPdFeCoNi HEA/C was evidenced by only 6 mV negativeshifted half-wave potential after 50,000 cycles of accelerated durability test(ADT).展开更多
To inhibit the agglomeration of tin-based nanomaterials and simplify the complicated synthesis process,a facile and eco-friendly self-formed template method is reported to synthesize tin submicron spheres dispersed in...To inhibit the agglomeration of tin-based nanomaterials and simplify the complicated synthesis process,a facile and eco-friendly self-formed template method is reported to synthesize tin submicron spheres dispersed in nitrogen-doped porous carbon(Sn/NPC)by pyrolysis of a mixture of disodium stannous citrate and urea.The vital point of this strategy is the formation of Na_(2)CO_(3)templates during pyrolysis.This self-formed Na_(2)CO_(3)acts as porous templates to support the formation of NPC.The obtained NPC provides good electronic conductivity,ample defects,and more active sites.Serving as anode for Li-ion batteries,the Sn/NPC electrode obtains a stable discharge capacity of 674.1 mAh/g after 150 cycles at 0.1 A/g.Especially,a high discharge capacity of 331.2 mAh/g can be achieved after 1100 cycles at 3 A/g.Additionally,a full cell coupled with LiCoO_(2)as cathode yields a discharge capacity of 524.8 mAh/g after 150 cycles at 0.1 A/g.In-situ XRD is implemented to investigate the alloying/dealloying reaction mechanisms.Density functional theory calculation ulteriorly explicates that NPC heightens intrinsic electronic conductivity,and NPC especially pyrrolic-N and pyridinic-N doping facilitates the Li-adsorption ability.Climbing image nudged elastic band method reveals low Li~+diffusion energy barrier in presence of N atoms,which accounts for the terrific electrochemical properties of Sn/NPC electrode.展开更多
Accurate and efficient predictions of the quasiparticle properties of complex materials remain a major challenge due to the convergence issue and the unfavorable scaling of the computational cost with respect to the s...Accurate and efficient predictions of the quasiparticle properties of complex materials remain a major challenge due to the convergence issue and the unfavorable scaling of the computational cost with respect to the system size.Quasiparticle GW calculations for two-dimensional(2D)materials are especially difficult.The unusual analytical behaviors of the dielectric screening and the electron self-energy of 2D materials make the conventional Brillouin zone(BZ)integration approach rather inefficient and require an extremely dense k-grid to properly converge the calculated quasiparticle energies.In this work,we present a combined nonuniform subsampling and analytical integration method that can drastically improve the efficiency of the BZ integration in 2D GW calculations.展开更多
We study the quasi-random choice method (QRCM) for the Liouville equation of ge- ometrical optics with discontinuous locM wave speed. This equation arises in the phase space computation of high frequency waves throu...We study the quasi-random choice method (QRCM) for the Liouville equation of ge- ometrical optics with discontinuous locM wave speed. This equation arises in the phase space computation of high frequency waves through interfaces, where waves undergo partial transmissions and reflections. The numerical challenges include interface, contact discon- tinuities, and measure-valued solutions. The so-called QRCM is a random choice method based on quasi-random sampling (a deterministic alternative to random sampling). The method not only is viscosity-free but also provides faster convergence rate. Therefore, it is appealing for the prob!em under study which is indeed a Hamiltonian flow. Our analy- sis and computational results show that the QRCM 1) is almost first-order accurate even with the aforementioned discontinuities; 2) gives sharp resolutions for all discontinuities encountered in the problem; and 3) for measure-valued solutions, does not need the level set decomposition for finite difference/volume methods with numerical viscosities.展开更多
The baroclinic-barotropic mode splitting technique is commonly employed in numerical solutions of the primitive equations for ocean modeling to deal with the multiple time scales of ocean dynamics.In this paper,a seco...The baroclinic-barotropic mode splitting technique is commonly employed in numerical solutions of the primitive equations for ocean modeling to deal with the multiple time scales of ocean dynamics.In this paper,a second-order implicit-explicit(IMEX)scheme is proposed to advance the baroclinic-barotropic split system.Specifically,the baroclinic mode and the layer thickness of fluid are evolved explicitly via the second-order strong stability preserving Runge-Kutta scheme,while the barotropic mode is advanced implicitly using the linearized Crank-Nicolson scheme.At each time step,the baroclinic velocity is first computed using an intermediate barotropic velocity.The barotropic velocity is then corrected by re-advancing the barotropic mode with an improved barotropic forcing.Finally,the layer thickness is updated by coupling the baroclinic and barotropic velocities together.In addition,numerical inconsistencies on the discretized sea surface height caused by the mode splitting are alleviated via a reconciliation process with carefully calculated flux deficits.Temporal truncation error is also analyzed to validate the second-order accuracy of the scheme.Finally,two benchmark tests from the MPAS-Ocean platform are conducted to numerically demonstrate the performance of the proposed IMEX scheme.展开更多
基金supported by the UC-National Lab In-Residence Graduate Fellowship Grant L21GF3606supported by a DOD National Defense Science and Engineering Graduate(NDSEG)Research Fellowship+1 种基金supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project numbers 20170668PRD1 and 20210213ERsupported by the NGA under Contract No.HM04762110003.
文摘Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi-or hyperspectral image segmentation.Our batch active learning approach selects a collection of unlabeled pixels that satisfy a graph local maximum constraint for the active learning acquisition function that determines the relative importance of each pixel to the classification.This work builds on recent advances in the design of novel active learning acquisition functions(e.g.,the Model Change approach in arXiv:2110.07739)while adding important further developments including patch-neighborhood image analysis and batch active learning methods to further increase the accuracy and greatly increase the computational efficiency of these methods.In addition to improvements in the accuracy,our approach can greatly reduce the number of labeled pixels needed to achieve the same level of the accuracy based on randomly selected labeled pixels.
基金funded by National Natural Science Foundation of China(NSFC)under Grant Nos.11702238,51904202,and 11902212Nanhu Scholars Program for Young Scholars of XYNU.
文摘This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structures,are employed to discretize the physical unknowns in the boundary integral formulations of the governing equations.Bezier extraction technique is employed to accelerate the evaluation of NURBS basis functions.We adopt a radial integration method to address the additional domain integrals.The numerical examples demonstrate the advantage of IGABEM in dimension reduction and the seamless connection between CAD and numerical analysis.
基金We acknowledge the support of Defense Advanced Research Projects Agency(Grant HR00111990S2)Toyota Research Institute(Award#849910).
文摘We present two approaches to system identification, i.e. the identification of partial differentialequations (PDEs) from measurement data. The first is a regression-based variational systemidentification procedure that is advantageous in not requiring repeated forward model solves andhas good scalability to large number of differential operators. However it has strict data typerequirements needing the ability to directly represent the operators through the available data.The second is a Bayesian inference framework highly valuable for providing uncertaintyquantification, and flexible for accommodating sparse and noisy data that may also be indirectquantities of interest. However, it also requires repeated forward solutions of the PDE modelswhich is expensive and hinders scalability. We provide illustrations of results on a model problemfor pattern formation dynamics, and discuss merits of the presented methods.
基金supported under the Center for Subsurface Modeling Affiliates Program,United States of America and the National Science Foundation,United States of America(1911320,Collaborative Research:High-Fidelity Modeling of Poromechanics with Strong Discontinuities)。
文摘We present a framework that couples a high-fidelity compositional reservoir simulator with Bayesian optimization(BO)for injection well scheduling optimization in geological carbon sequestration.This work represents one of the first at tempts to apply BO and high-fidelity physics models to geological carbon storage.The implicit parallel accurate reservoir simulator(IPARS)is utilized to accurately capture the underlying physical processes during CO_(2)sequestration.IPARS provides a framework for several flow and mechanics models and thus supports both stand-alone and coupled simulations.In this work,we use the compositional flow module to simulate the geological carbon storage process.The compositional flow model,which includes a hysteretic three-phase relative permeability model,accounts for three major CO_(2)trapping mechanisms:structural trapping,residual gas trapping,and solubility trapping.Furthermore,IPARS is coupled to the International Business Machines(IBM)Corporation Bayesian Optimization Accelerator(BOA)for parallel optimizations of CO_(2)injection strategies during field-scale CO_(2)sequestration.BO builds a probabilistic surrogate for the objective function using a Bayesian machine learning algorithm-the Gaussian process regression,and then uses an acquisition function that leverages the uncertainty in the surrogate to decide where to sample.The IBM BOA addresses the three weaknesses of standard BO that limits its scalability in that IBM BOA supports parallel(batch)executions,scales better for high-dimensional problems,and is more robust to initializations.We demonstrate these merits by applying the algorithm in the optimization of the CO_(2)injection schedule in the Cranfield site in Mississippi,USA,using field data.The optimized injection schedule achieves 16%more gas storage volume and 56%less water/surfactant usage compared with the baseline.The performance of BO is compared with that of a genetic algorithm(GA)and a covariance matrix adaptation(CMA)-evolution strategy(ES).The results demonstrate the superior performance of BO,in that it achieves a competitive objective function value with over 60%fewer forward model evaluations.
基金Supported by the US Department of Energy under the PSAAP Program
文摘The Burgers' equation with uncertain initial and boundary conditions is approximated using a Polynomial Chaos Expansion (PCE) approach where the solution is represented as a series of stochastic, orthogonal polynomials. The resulting truncated PCE system is solved using a novel numerical discretization method based on spatial derivative operators satisfying the summation by parts property and weak boundary conditions to ensure stability. The resulting PCE solution yields an accurate quantitative description of the stochastic evolution of the system, provided that appropriate boundary conditions are available. The specification of the boundary data is shown to influence the solution; we will discuss the problematic implications of the lack of precisely characterized boundary data and possible ways of imposing stable and accurate boundary conditions.
基金FF and LDL gratefully acknowledge the financial support of the German Research Foundation(DFG)within the DFG Priority Program SPP 1748“Reliable Simulation Techniques in Solid Mechanics”.AR has been partially supported by the MIUR-PRIN project XFAST-SIMS(No.20173C478 N).
文摘We investigate primal and mixed u−p isogeometric collocation methods for application to nearly-incompressible isotropic elasticity.The primal method employs Navier’s equations in terms of the displacement unknowns,and the mixed method employs both displacement and pressure unknowns.As benchmarks for what might be considered acceptable accuracy,we employ constant-pressure Abaqus finite elements that are widely used in engineering applications.As a basis of comparisons,we present results for compressible elasticity.All the methods were completely satisfactory for the compressible case.However,results for low-degree primal methods exhibited displacement locking and in general deteriorated in the nearly-incompressible case.The results for the mixed methods behaved very well for two of the problems we studied,achieving levels of accuracy very similar to those for the compressible case.The third problem,which we consider a“torture test”presented a more complex story for the mixed methods in the nearly-incompressible case.
文摘During April 20-22,2022,colleagues and friends gathered at the Institute of Pure&Applied Mathematics(IPAM),at the University of California at Los Angeles to celebrate Professor Stanley Osher's 8Oth birthday in a conference focusing on recent developments in"Optimization,Shape analysis,High-dimensional differential equations in science and Engineering,and machine learning Research(OSHER)"This conference hosted in-person talks by mathematicians,scientists,and industrial professionals worldwide.Those who could not attend extended their warm regards and expressed their appreciation for Professor Osher.
基金the National Natural Science Foundation of China(NSFC)under Grant Nos.12272124 and 11972146.
文摘Isogeometric analysis (IGA) is known to showadvanced features compared to traditional finite element approaches.Using IGA one may accurately obtain the geometrically nonlinear bending behavior of plates with functionalgrading (FG). However, the procedure is usually complex and often is time-consuming. We thus put forward adeep learning method to model the geometrically nonlinear bending behavior of FG plates, bypassing the complexIGA simulation process. A long bidirectional short-term memory (BLSTM) recurrent neural network is trainedusing the load and gradient index as inputs and the displacement responses as outputs. The nonlinear relationshipbetween the outputs and the inputs is constructed usingmachine learning so that the displacements can be directlyestimated by the deep learning network. To provide enough training data, we use S-FSDT Von-Karman IGA andobtain the displacement responses for different loads and gradient indexes. Results show that the recognition erroris low, and demonstrate the feasibility of deep learning technique as a fast and accurate alternative to IGA formodeling the geometrically nonlinear bending behavior of FG plates.
基金supported by the National Science Foundation(Grant No.DMS-1440415)partially supported by a grant from the Simons Foundation,NSF Grants DMS-1720171 and DMS-2110895a Discovery Grant from Natural Sciences and Engineering Research Council of Canada.
文摘We propose a new framework for the sampling,compression,and analysis of distributions of point sets and other geometric objects embedded in Euclidean spaces.Our approach involves constructing a tensor called the RaySense sketch,which captures nearest neighbors from the underlying geometry of points along a set of rays.We explore various operations that can be performed on the RaySense sketch,leading to different properties and potential applications.Statistical information about the data set can be extracted from the sketch,independent of the ray set.Line integrals on point sets can be efficiently computed using the sketch.We also present several examples illustrating applications of the proposed strategy in practical scenarios.
基金This study was funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.11702238,51904202 and 11902212)and Nanhu Scholars Program for Young Scholars of XYNU.
文摘The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.
基金We acknowledge the support of the National Natural Science Foundation of China(NSFC)under Grant Nos.51904202 and 11702238Stephane Bordas thanks the financial support of Intuitive modeling and SIMulation platform(IntuiSIM)(PoC17/12253887)grant by Luxembourg National Research Fund.
文摘This paper proposes a novel optimization framework in passive control techniques to reduce noise pollution.The geometries of the structures are represented by Catmull-Clark subdivision surfaces,which are able to build gap-free Computer-Aided Design models and meanwhile tackle the extraordinary points that are commonly encountered in geometricmodelling.The acoustic fields are simulated using the isogeometric boundary elementmethod,and a density-based topology optimization is conducted to optimize distribution of sound-absorbing materials adhered to structural surfaces.The approach enables one to perform acoustic optimization from Computer-Aided Design models directly without needingmeshing and volume parameterization,thereby avoiding the geometric errors and time-consuming preprocessing steps in conventional simulation and optimization methods.The effectiveness of the present method is demonstrated by three dimensional numerical examples.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20180855)Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Grant No.MCMS-E-0219Y01)Research and Practice Innovation Program of postgraduates in Jiangsu Province(Grant No.KYCX20-3076)。
文摘Potential damage in composite structures caused by hail ice impact is an essential safety threat to the aircraft in flight.In this study,a nonlinear finite element(FE)model is developed to investigate the dynamic response and damage behavior of hybrid corrugated sandwich structures subjected to high velocity hail ice impact.The impact and breaking behavior of hail are described using the FE-smoothed particle hydrodynamics(FE-SPH)method.A rate-dependent progressive damage model is employed to capture the intra-laminar damage response;cohesive element and surface-based cohesive contact are implemented to predict the inter-laminar delamination and sheet/core debonding phenomena respectively.The transient processes of sandwich structure under different hail ice impact conditions are analyzed.Comparative analysis is conducted to address the influences of core shape and impact position on the impact performance of sandwich structures and the corresponding energy absorption characteristics are also revealed.
文摘Anti-plane deformation of square lattices containing interphases is analyzed. It is assumed that lattices are linear elastic but not necessarily isotropic, whereas interphases exhibit non-linear elastic behavior. It is demonstrated that such problems can be treated effectively using Green's functions, which allow to eliminate the degrees of freedom outside of the interphase. Illustrative numerical examples focus on the determination of applied stresses leading to lattice instability.
基金supported by the National Key R&D Program of China(Grant No.2021YFA1400201)the National Natural Science Foundation of China(Grant Nos.12025407 and 11934004)Chinese Academy of Sciences(Grant Nos.XDB330301 and YSBR047)。
文摘Light-induced ultrafast spin dynamics in materials is of great importance for developments of spintronics and magnetic storage technology.Recent progresses include ultrafast demagnetization,magnetic switching,and magnetic phase transitions,while the ultrafast generation of magnetism is hardly achieved.Here,a strong lightinduced magnetization(up to 0.86μBper formula unit)is identified in non-magnetic monolayer molybdenum disulfide(MoS_(2)).With the state-of-the-art time-dependent density functional theory simulations,we demonstrate that the out-of-plane magnetization can be induced by circularly polarized laser,where chiral phonons play a vital role.The phonons strongly modulate spin-orbital interactions and promote electronic transitions between the two conduction band states,achieving an effective magnetic field~380 T.Our study provides important insights into the ultrafast magnetization and spin-phonon coupling dynamics,facilitating effective light-controlled valleytronics and magnetism.
文摘The objective of this paper is to investigate water supercooling. Supercooling occurs when a liquid does not freeze although its temperature is below its freezing point. In general, supercooling is an unstable condition and occurs under special conditions. The parameters that influence supercooling stability and probability of occurrence include freezer temperature and water’s initial temperature. In this paper, it is shown that with a freezer temperature range of -3℃ to -8℃, supercooling is most likely to happen and is independent of the water’s initial temperature. Furthermore, as the freezer temperature decreases, the probability of nucleation increases, causing instant freezing. Finally, it is concluded that the Mpemba effect, in which initially hot water freezes faster than initially cold water, is due to the supercooling instability in initially hot water in which nucleation agents are more active.
基金the National Natural Science Foundation of China(Nos.21972016 and 21773023)National Youth Top-notch Talent Support Program of China,Sichuan Science and Technology Program(No.2020YJ0243)+1 种基金Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology(No.SKLPST 202103)Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(No.2022-K28).
文摘Developing efficient platinum-based electrocatalysts with super durability for the oxygen reduction reaction(ORR)is highly desirable to promote the large-scale commercialization of fuel cells.Although progress has been made in this aspect,the electrochemical kinetics and stability of platinum-based catalysts are still far from the requirements of the practical applications.Herein,PtPdFeCoNi high-entropy alloy(HEA)nanoparticles were demonstrated via a high-temperature injection method.PtPdFeCoNi HEA nanocatalyst exhibits outstanding catalytic activity and stability towards ORR due to the high entropy,lattice distortion,and sluggish diffusion effects of HEA,and the HEA nanoparticles delivered a mass activity of 1.23 A/mgPt and a specific activity of 1.80 mA/cmPt 2,which enhanced by 6.2 and 4.9 times,respectively,compared with the values of the commercial Pt/C catalyst.More importantly,the high durability of PtPdFeCoNi HEA/C was evidenced by only 6 mV negativeshifted half-wave potential after 50,000 cycles of accelerated durability test(ADT).
基金supported by the China Postdoctoral Science Foundation(No.2020M670719)the Doctoral Research Startup Fund of Liaoning Province(No.2020-BS-066)the Fundamental Research Funds for the Central Universities(No.3132019328)。
文摘To inhibit the agglomeration of tin-based nanomaterials and simplify the complicated synthesis process,a facile and eco-friendly self-formed template method is reported to synthesize tin submicron spheres dispersed in nitrogen-doped porous carbon(Sn/NPC)by pyrolysis of a mixture of disodium stannous citrate and urea.The vital point of this strategy is the formation of Na_(2)CO_(3)templates during pyrolysis.This self-formed Na_(2)CO_(3)acts as porous templates to support the formation of NPC.The obtained NPC provides good electronic conductivity,ample defects,and more active sites.Serving as anode for Li-ion batteries,the Sn/NPC electrode obtains a stable discharge capacity of 674.1 mAh/g after 150 cycles at 0.1 A/g.Especially,a high discharge capacity of 331.2 mAh/g can be achieved after 1100 cycles at 3 A/g.Additionally,a full cell coupled with LiCoO_(2)as cathode yields a discharge capacity of 524.8 mAh/g after 150 cycles at 0.1 A/g.In-situ XRD is implemented to investigate the alloying/dealloying reaction mechanisms.Density functional theory calculation ulteriorly explicates that NPC heightens intrinsic electronic conductivity,and NPC especially pyrrolic-N and pyridinic-N doping facilitates the Li-adsorption ability.Climbing image nudged elastic band method reveals low Li~+diffusion energy barrier in presence of N atoms,which accounts for the terrific electrochemical properties of Sn/NPC electrode.
基金This work is supported by the NSF under Grant Nos DMR-1506669 and DMREF-1626967P.Z.acknowledges the Southern University of Science and Technology(SUSTech)for hosting his extended visit during spring 2019 when he was on sabbatical+3 种基金Work at SUSTech and SHU is supported by the National Natural Science Foundation of China(Nos 51632005,51572167,and 11929401)W.Z.also acknowledges the support from the Guangdong Innovation Research Team Project(No.2017ZT07C062)Guangdong Provincial Key-Lab program(No.2019B030301001)Shenzhen Municipal Key-Lab program(ZDSYS20190902092905285),and the Shenzhen Pengcheng-Scholarship Program.
文摘Accurate and efficient predictions of the quasiparticle properties of complex materials remain a major challenge due to the convergence issue and the unfavorable scaling of the computational cost with respect to the system size.Quasiparticle GW calculations for two-dimensional(2D)materials are especially difficult.The unusual analytical behaviors of the dielectric screening and the electron self-energy of 2D materials make the conventional Brillouin zone(BZ)integration approach rather inefficient and require an extremely dense k-grid to properly converge the calculated quasiparticle energies.In this work,we present a combined nonuniform subsampling and analytical integration method that can drastically improve the efficiency of the BZ integration in 2D GW calculations.
文摘We study the quasi-random choice method (QRCM) for the Liouville equation of ge- ometrical optics with discontinuous locM wave speed. This equation arises in the phase space computation of high frequency waves through interfaces, where waves undergo partial transmissions and reflections. The numerical challenges include interface, contact discon- tinuities, and measure-valued solutions. The so-called QRCM is a random choice method based on quasi-random sampling (a deterministic alternative to random sampling). The method not only is viscosity-free but also provides faster convergence rate. Therefore, it is appealing for the prob!em under study which is indeed a Hamiltonian flow. Our analy- sis and computational results show that the QRCM 1) is almost first-order accurate even with the aforementioned discontinuities; 2) gives sharp resolutions for all discontinuities encountered in the problem; and 3) for measure-valued solutions, does not need the level set decomposition for finite difference/volume methods with numerical viscosities.
基金partially supported by the U.S.Department of Energy,Office of Science,Office of Biological and Environmental Research through Earth and Environmental System Modeling and Scientific Discovery through Advanced Computing programs under university grants DE-SC0020270 and DE-SC0020418partially supported by Shandong Excellent Young Scientists Program(Overseas)under the grant 2023HWYQ-064OUC Youth Talents Project.
文摘The baroclinic-barotropic mode splitting technique is commonly employed in numerical solutions of the primitive equations for ocean modeling to deal with the multiple time scales of ocean dynamics.In this paper,a second-order implicit-explicit(IMEX)scheme is proposed to advance the baroclinic-barotropic split system.Specifically,the baroclinic mode and the layer thickness of fluid are evolved explicitly via the second-order strong stability preserving Runge-Kutta scheme,while the barotropic mode is advanced implicitly using the linearized Crank-Nicolson scheme.At each time step,the baroclinic velocity is first computed using an intermediate barotropic velocity.The barotropic velocity is then corrected by re-advancing the barotropic mode with an improved barotropic forcing.Finally,the layer thickness is updated by coupling the baroclinic and barotropic velocities together.In addition,numerical inconsistencies on the discretized sea surface height caused by the mode splitting are alleviated via a reconciliation process with carefully calculated flux deficits.Temporal truncation error is also analyzed to validate the second-order accuracy of the scheme.Finally,two benchmark tests from the MPAS-Ocean platform are conducted to numerically demonstrate the performance of the proposed IMEX scheme.