期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Stress-assisted design of stiffened graphene electrode structure toward compact energy storage
1
作者 Yuzuo Wang Jing Chen +11 位作者 Huasong Qin Ke Chen Zhuangnan Li Yan Chen Juan Li Tianzhao Hu Shaorui Chen Zhijun Qiao Dianbo Ruan Quanhong Yang Yilun Liu Feng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期478-487,I0013,共11页
The low spatial charge-storage density of porous carbons greatly limits volumetric performance in electrochemical capacitors.An increase of charge-storage density requires structural refinements to balance the trade-o... The low spatial charge-storage density of porous carbons greatly limits volumetric performance in electrochemical capacitors.An increase of charge-storage density requires structural refinements to balance the trade-offs between the porosity and density of materials,but the limited mechanical properties of carbons usually fail to withstand effective densifying processes and obtain an ideal pore structure.Herein,we design the stiffened graphene of superior bending rigidity,enabling the fine adjustments of pore structure to maximize the volumetric capacitance for the graphene-based electrodes.The inplane crumples on graphene sheets are found to contribute largely to the bending rigidity,which is useful to control the structural evolution and maintain sufficient ion-accessible surface area during the assembling process.This makes the capacitance of stiffening activated graphene keep 98%when the electrode density increases by 769%to reach 1.13 g cm^(-3) after mechanical pressure,an excellent volumetric energy density of 98.7 Wh L^(-1) in an ionic-liquid electrolyte is achieved.Our results demonstrate the role of intrinsic material properties on the performance of carbon-based electrodes for capacitive energy storage. 展开更多
关键词 SUPERCAPACITOR Activated graphene Bending rigidity Volumetric capacitance Pore structure
在线阅读 下载PDF
Biomimetic 3D printing of composite structures with decreased cracking
2
作者 Fan Du Kai Li +7 位作者 Mingzhen Li Junyang Fang Long Sun Chao Wang Yexin Wang Maiqi Liu Jinbang Li Xiaoying Wang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期24-34,共11页
The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepar... The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepared by traditional printing methods are prone to fiber cracking during solvent evaporation.Human skin has an excellent natural heat-management system,which helps to maintain a constant body temperature through perspiration or blood-vessel constriction.In this work,an electrohydrodynamic-jet 3D-printing method inspired by the thermal-management system of skin was developed.In this system,the evaporation of solvent in the printed fibers can be adjusted using the temperature-change rate of the substrate to prepare 3D structures with good structural integrity.To investigate the solvent evaporation and the interlayer bonding of the fibers,finite-element analysis simulations of a three-layer microscale structure were carried out.The results show that the solvent-evaporation path is from bottom to top,and the strain in the printed structure becomes smaller with a smaller temperaturechange rate.Experimental results verified the accuracy of these simulation results,and a variety of complex 3D structures with high aspect ratios were printed.Microscale cracks were reduced to the nanoscale by adjusting the temperature-change rate from 2.5 to 0.5℃s-1.Optimized process parameters were selected to prepare a tissue engineering scaffold with high integrity.It was confirmed that this printed scaffold had good biocompatibility and could be used for bone-tissue regeneration.This simple and flexible 3D-printing method can also help with the preparation of a wide range of micro-and nanostructured sensors and actuators. 展开更多
关键词 3D printing Electrohydrodynamic jet BIOMIMETIC Structural integrity Composite scaffold
在线阅读 下载PDF
Damage analysis of POZD coated square reinforced concrete slab under contact blast 被引量:6
3
作者 Wei Wang Qing Huo +3 位作者 Jian-chao Yang Jian-hui Wang Xing Wang Wei-liang Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1715-1726,共12页
High efficiency, environmental protection and sustainability have become the main theme of the development of the protection engineering, requiring that the components not only meet the basic functions, but also have ... High efficiency, environmental protection and sustainability have become the main theme of the development of the protection engineering, requiring that the components not only meet the basic functions, but also have chemical properties such as acid and alkali corrosion resistance and aging resistance. Polyisocyanate-oxazodone(POZD) polymer has the above characteristics, it also has the advantages of strong toughness, high strength and high elongation. The concrete slab sprayed with POZD material has excellent anti-blast performance. In order to explore the damage characteristics of POZD sprayed concrete slabs under the action of contact explosion thoroughly, the contact explosion test of POZD concrete slabs with different charges were carried out. On the basis of experimental verification,numerical simulation were used to study the influence of the thickness of the POZD on the blast resistance of the concrete slab. According to the test and numerical simulation results that as the thickness of the coating increases, the anti-blast performance of the concrete slab gradually increases,and the TNT equivalent required for critical failure is larger. Based on the above analysis, empirical expressions on normalized crater diameter, the normalized spall diameter and normalized spall diameter are obtained. 展开更多
关键词 Contact exposion Square reinforced concrete slab POZD coating Numerical simulation
在线阅读 下载PDF
Experimental investigation of ultra-early-strength cement-based selfcompacting high strength concrete slabs(URCS)under contact explosions 被引量:1
4
作者 Wei Wang Qing Huo +2 位作者 Jian-chao Yang Jian-hui Wang Xing Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期326-339,共14页
In this paper,UR50 ultra-early-strength cement-based self-compacting high-strength concrete slabs(URCS)have been subjected to contact explosion tests with different TNT charge quality,aiming to evaluate the anti-explo... In this paper,UR50 ultra-early-strength cement-based self-compacting high-strength concrete slabs(URCS)have been subjected to contact explosion tests with different TNT charge quality,aiming to evaluate the anti-explosive performance of URCS.In the experiment,three kinds of ultra-early-strength cement-based reinforced concrete slabs with different reinforcement ratios and a normal concrete slab(NRCS)were used as the control specimen,the curing time of URCS is 28 days and 24 h respectively.The research results show that URCS has a stronger anti-explosion ability than NRCS.The failure mode of URCS under contact explosion is that the front of the reinforced concrete slab explodes into a crater,and the back is spall.With the increase of the charge,the failure mode of the reinforced concrete slab gradually changed to explosive penetration and explosive punching.The experiment results also show that the reinforcement ratio of URCS has little effect on the anti-blast performance,and URCS can reach its anti-blast performance at 28 days after curing for 24 h.On this basis,the damage parameters of URCS for different curing durations were quantified,and an empirical formula for predicting the diameter of the crater and spalling was established. 展开更多
关键词 Ultra-early-strength concrete slabs Blast load Contact blast Blast-resistant performance
在线阅读 下载PDF
Revisiting Electrolyte Kinetics Differences in Sodium Ion Battery:Are Esters Really Inferior to Ethers? 被引量:2
5
作者 Lei Yan Guifang Zhang +8 位作者 Jing Wang Qingjuan Ren Linlin Fan Binhua Liu Yujia Wang Wenhua Lei Dianbo Ruan Qingyin Zhang Zhiqiang Shi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期203-210,共8页
The ether electrolytes usually outperform ester electrolytes by evaluating sodium-ion batteries(SIBs)rate performance,which is a near-unanimous conclusion of previous studies based on an essential configuration of the... The ether electrolytes usually outperform ester electrolytes by evaluating sodium-ion batteries(SIBs)rate performance,which is a near-unanimous conclusion of previous studies based on an essential configuration of the half-cell test.However,here we find that contrary to consensus,the ester electrolyte shows better Na storage capability than the ether electrolyte in full cells.An in-depth analysis of three-electrode,symmetric cell,and in situ XRD tests indicates that traditional half-cell test results are unreliable due to interference from Na electrodes.In particular,Na electrodes show a huge stability difference in ester and ether electrolytes,and ester electrolytes suffer more severe interference than ether electrolytes,resulting in the belief that esters are far inferior to ether electrolytes.More seriously,the more accurate three-electrode test would also suffer from Na electrode interference.Thus,a“corrected half-cell test”protocol is developed to shield the Na electrode interference,revealing the very close super rate capability of hard carbon in ester and ether electrolytes.This work breaks the inherent perception that the kinetic properties of ester electrolytes are inferior to ethers in sodium-ion batteries,reveals the pitfalls of half-cell tests,and proposes a new test protocol for reliable results,greatly accelerating the commercialization of sodium-ion batteries. 展开更多
关键词 corrected half-cell test electrolyte kinetic data hard carbon Na electrode interference sodium-ion batteries
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部