A thermodynamically complete multi-phase equation of state(EOS)applicable to both dense and porous metals at wide ranges of temperature and pressure is constructed.A standard three-term decomposition of the Helmholtz ...A thermodynamically complete multi-phase equation of state(EOS)applicable to both dense and porous metals at wide ranges of temperature and pressure is constructed.A standard three-term decomposition of the Helmholtz free energy as a function of specific volume and temperature is presented,where the cold component models both compression and expansion states,the thermal ion component introduces the Debye approximation and melting entropy,and the thermal electron component employs the Thomas-Fermi-Kirzhnits(TFK)model.The porosity of materials is considered by introducing the dynamic porosity coefficientαand the constitutive P-αrelation,connecting the thermodynamic properties between dense and porous systems,allowing for an accurate description of the volume decrease caused by void collapse while maintaining the quasi-static thermodynamic properties of porous systems identical to the dense ones.These models enable the EOS applicable and robust at wide ranges of temperature,pressure and porosity.A systematic evaluation of the new EOS is conducted with aluminum(Al)as an example.300 K isotherm,shock Hugoniot,as well as melting curves of both dense and porous Al are calculated,which shows great agreements with experimental data and validates the effectiveness of the models and the accuracy of parameterizations.Notably,it is for the first time Hugoniot P-σcurves up to 10~6 GPa and shock melting behaviors of porous Al are derived from analytical EOS models,which predict much lower compression limit and shock melting temperatures than those of dense Al.展开更多
This study uses nonequilibrium molecular dynamics simulations to explore the dynamic failures and deformation mechanisms of a cylindrical shell composed of nanocrystalline nickel-titanium alloy under implosion loading...This study uses nonequilibrium molecular dynamics simulations to explore the dynamic failures and deformation mechanisms of a cylindrical shell composed of nanocrystalline nickel-titanium alloy under implosion loading.We discover that some individual spall planes are sequentially generated in the material along the propagation of a radial stress wave,indicative of the formation of multiple spallation.For larger grain sizes,void nucleation at the first spallation occurs in a coexisting intergranular/transgranular manner,whereas with decreasing grain size,voids tend to nucleate along the grain boundaries.Correspondingly,the spall strength exhibits a transition from an inverse Hall-Petch to a Hall-Petch relationship.For larger grain sizes,at the secondary spallation,localized shearing zones and grain boundaries provide potential void-nucleated sites.Importantly,the formation of shear deformation bands promotes grain refinement,contributing to a reduction in the dislocation-induced strengthening effect.Consequently,a lower spall strength is produced,in contrast to the first spallation.As the grain size becomes smaller,voids nucleate mostly along grain boundaries,and plastic deformation is dominated by dense grain boundaries.Overall,the high temperature caused by shear localization leads to material weakening,and in turn there is a significant decrease in the spall strength for the secondary spallation,compared with the first.Finally,significant penetration between two spall planes is observed for large grain size,which can be attributed to the nucleation of voids on linking grain boundaries,with temperatures exceeding the melting point of the material.展开更多
The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grid...The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grids, under typical hovering and forward flight conditions. Both the interaction between the contralateral wings and the interaction between the body and wings are very weak, e.g. at hovering, changes in aerodynamic forces of a wing due to the present of the other wing are less than 3% and changes in aerodynamic forces of the wings due to presence of the body are less than 2%. The reason for this is as following. During each down- or up-stroke, a wing produces a vortex ring, which induces a relatively large jet-like flow inside the ring but very small flow outside the ring. The vortex rings of the left and right wings are on the two sides of the body. Thus one wing is outside vortex ring of the other wing and the body is outside the vortex rings of the left and right wings, resulting in the weak interactions.展开更多
For investigating efficiently the stagnation kinetic-process of Z-pinch,we develop a novel modified electrostatic implicit particle-in-cell algorithm in radial one-dimension for Z-pinch simulation in which a small-ang...For investigating efficiently the stagnation kinetic-process of Z-pinch,we develop a novel modified electrostatic implicit particle-in-cell algorithm in radial one-dimension for Z-pinch simulation in which a small-angle cumulative binary collision algorithm is used.In our algorithm,the electric field in z-direction is solved by a parallel electrode-plate model,the azimuthal magnetic field is obtained by Ampere’s law,and the term for charged particle gyromotion is approximated by the cross product of the averaged velocity and magnetic field.In simulation results of 2 MA deuterium plasma shell Zpinch,the mass-center implosion trajectory agrees generally with that obtained by one-dimensional MHD simulation,and the plasma current also closely aligns with the external current.The phase space diagrams and radial-velocity probability distributions of ions and electrons are obtained.The main kinetic characteristic of electron motion is thermal equilibrium and oscillation,which should be oscillated around the ions,while that of ion motion is implosion inwards.In the region of stagnation radius,the radial-velocity probability distribution of ions transits from the non-equilibrium to equilibrium state with the current increasing,while of electrons is basically the equilibrium state.When the initial ion density and current peak are not high enough,the ions may not reach their thermal equilibrium state through collisions even in its stagnation phase.展开更多
Employing two fully relativistic methods,the multi-reference configuration Dirac-Hartree-Fock(MCDHF)methodand the relativistic many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the ...Employing two fully relativistic methods,the multi-reference configuration Dirac-Hartree-Fock(MCDHF)methodand the relativistic many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest35 energy levels of the(1s^(2))nl configurations(where the principal quantum number n=2-6 and the angular quantum numberl=0,...,n-1)of lithium-like germanium(Ge XXX),as well as complete data on the transition wavelengths,radiativerates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magneticdipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.The results from the two methodsare consistent with each other and align well with previous accurate experimental and theoretical findings.We assess theoverall accuracies of present RMBPT results to be likely the most precise ones to date.The present fully relativistic resultsshould be helpful for soft x-ray laser research,spectral line identification,plasma modeling and diagnosing.The datasetspresented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00135.展开更多
Based on the unified Hauser–Feshbach and exciton model,which can describe the particle emission processes between discrete energy levels with energy,angular momentum,and parity conservations,a statistical theory of l...Based on the unified Hauser–Feshbach and exciton model,which can describe the particle emission processes between discrete energy levels with energy,angular momentum,and parity conservations,a statistical theory of light nucleus reaction(STLN)is developed to calculate the double-differential cross-sections of the outgoing neutron and light charged particles for the proton-induced^(6) Li reaction.A significant difference is observed between the p+^(6) Li and p+^(7) Li reactions owing to the discrepancies in the energy-level structures of the targets.The reaction channels,including sequential and simultaneous emission processes,are analyzed in detail.Taking the double-differential cross-sections of the outgoing proton as an example,the influence of contaminations(such as^(1) H,^(7)Li,^(12)C,and^(16)O)on the target is identified in terms of the kinetic energy of the first emitted particles.The optical potential parameters of the proton are obtained by fitting the elastic scattering differential cross-sections.The calculated total double-differential cross-sections of the outgoing proton and deuteron at E_(p)=14 MeV agree well with the experimental data for different outgoing angles.Simultaneously,the mixed double differential cross-sections of^(3) He andαare in good agreement with the measurements.The agreement between the measured data and calculated results indicates that the two-body and three-body breakup reactions need to be considered,and the pre-equilibrium reaction mechanism dominates the reaction processes.Based on the STLN model,a PLUNF code for the p+^(6) Li reaction is developed to obtain an ENDF-6-formatted file of the double-differential cross-sections of the nucleon and light composite charged particles.展开更多
Based on ab initio calculations,we utilize the mean-field potential approach with the quantum modification in conjunction with stress–strain relation to investigate the elastic anisotropies and sound velocities of hc...Based on ab initio calculations,we utilize the mean-field potential approach with the quantum modification in conjunction with stress–strain relation to investigate the elastic anisotropies and sound velocities of hcp and bcc Be under high-temperature(0–6000 K)and high-pressure(0–500 GPa)conditions.We propose a general definition of anisotropy for elastic moduli and sound velocities.Results suggest that the elastic anisotropy of Be is more significantly influenced by pressure than by temperature.The pressure-induced increase of c/a ratio makes the anisotropy of hcp Be significantly strengthen.Nevertheless,the hcp Be still exhibits smaller anisotropy than bcc Be in terms of elastic moduli and sound velocities.We suggest that measuring the anisotropy in shear sound velocity may be an approach to distinguishing the hcp–bcc phase transition under extreme conditions.展开更多
The interaction between shock waves and multiple cylinders,referred to as shock–cylinder interaction(SCI),is an important phenomenon in science and engineering.However,its underlying physical mechanisms remain unclea...The interaction between shock waves and multiple cylinders,referred to as shock–cylinder interaction(SCI),is an important phenomenon in science and engineering.However,its underlying physical mechanisms remain unclear.This study entailed the numerical simulation of the aerobreakup of two tandem water columns subjected to a high-speed gas flow by using an adaptive mesh refinement(AMR)-based diffusion-interface model.The objective was to elucidate the changes in water–column deformation patterns over a wide range of Weber numbers.Statistical analysis was performed to examine the deformation of the water columns in vertical directions.Results reveal distinct deformation patterns between the two columns as the Weber number increases.Additionally,an extended exponential stretching law model was devised,and its improved capability to predict the deformation patterns was demonstrated.展开更多
The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molec...The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molecular structure of SiS is limited.To obtain accurate information about the structure of its excited states,the high-precision multireference configuration interaction(MRCI)method has been utilized.This method is used to calculate the potential energy curves(PECs)of the 18Λ–S states corresponding to the lowest dissociation limit of SiS.The core–valence correlation effect,Davidson’s correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation.Based on the calculated PECs,the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results.The transition dipole moments(TDMs)and dipole moments(DMs)are determined by the MRCI method.In addition,the abrupt variations of the DMs for the 1^(5)Σ^(+)and 2^(5)Σ^(+)states at the avoided crossing point are attributed to the variation of the electronic configuration.The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures.With increasing temperature,the expanding population of excited states blurs the band boundaries.展开更多
The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effe...The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effect.It is found that the vibronic effect converts the dipole-forbidden excitation of the ^(1)A_(2) into a dipole-allowed one,which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region.The present investigation shows that the vibronic effect of H_(2)O is slightly stronger than that of D_(2)O,which exhibits a clear isotopic effect.展开更多
A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allow...A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.展开更多
Hydride precipitation in zirconium cladding materials can damage their integrity and durability.Service temperature and material defects have a significant effect on the dynamic growth of hydrides.In this study,we hav...Hydride precipitation in zirconium cladding materials can damage their integrity and durability.Service temperature and material defects have a significant effect on the dynamic growth of hydrides.In this study,we have developed a phasefield model based on the assumption of elastic behaviour within a specific temperature range(613 K-653 K).This model allows us to study the influence of temperature and interfacial effects on the morphology,stress,and average growth rate of zirconium hydride.The results suggest that changes in temperature and interfacial energy influence the length-to-thickness ratio and average growth rate of the hydride morphology.The ultimate determinant of hydride orientation is the loss of interfacial coherency,primarily induced by interfacial dislocation defects and quantifiable by the mismatch degree q.An escalation in interfacial coherency loss leads to a transition of hydride growth from horizontal to vertical,accompanied by the onset of redirection behaviour.Interestingly,redirection occurs at a critical mismatch level,denoted as qc,and remains unaffected by variations in temperature and interfacial energy.However,this redirection leads to an increase in the maximum stress,which may influence the direction of hydride crack propagation.This research highlights the importance of interfacial coherency and provides valuable insights into the morphology and growth kinetics of hydrides in zirconium alloys.展开更多
An experiment on 100 k J laser facility is performed to study the motive features and radiation properties of plasmas from different areas inside gas-filled cylindrical hohlraums.These hohlraums are designed to posses...An experiment on 100 k J laser facility is performed to study the motive features and radiation properties of plasmas from different areas inside gas-filled cylindrical hohlraums.These hohlraums are designed to possess one open end and one laser entrance hole(LEH)with different diameters,which would or not result in the blocking of the LEH.An x-ray streak camera that is set at 16 degrees with respect to the hohlraum axis is applied to acquire the timeresolved x-ray images from the open end.Based on the images,we can study the evolutions of the wall plasma,corona bubble plasma and LEH plasma simultaneously through an equivalent view field of hohlraum interior.Multi-group flat response x-ray detectors are applied to measure the x-ray fluxes.In order to understand these characteristics,our two-dimensional radiation hydrodynamic code is used to simulate the experimental results.For the accuracy of reproduction,dielectronic recombination and two parameter corrections are applied in our code.Based on the comparison between experiments and simulations,we quantitatively understand the blocking process of LEH and the motion effects of other plasmas.The calibrated code is beneficial to design the gas-filled hohlraum in a nearby parameter space,especially the limit size of LEH.展开更多
A self-consistent and precise method to determine the time-dependent radiative albedo,i.e.,the ratio of the reemission flux to the incident flux,for an indirect-drive inertial confinement fusion Hohlraum wall material...A self-consistent and precise method to determine the time-dependent radiative albedo,i.e.,the ratio of the reemission flux to the incident flux,for an indirect-drive inertial confinement fusion Hohlraum wall material is proposed.A specially designed symmetrical triple-cavity gold Hohlraum is used to create approximately constant and near-equilibrium uniform radiation with a peak temperature of 160 eV.The incident flux at the secondary cavity waist is obtained from flux balance analysis and from the shock velocity of a standard sample.The results agree well owing to the symmetrical radiation in the secondary cavity.A self-consistent and precise time-dependent radiative albedo is deduced from the reliable reemission flux and the incident flux,and the result from the shock velocity is found to have a smaller uncertainty than that from the multi-angle flux balance analysis,and also to agree well with the result of a simulation using the HYADES opacity.展开更多
Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 1...Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 12 should have been 7,8,9 and 10.The original article has been corrected.展开更多
For the laboratory astrophysics community, those spectroscopic modeling codes extensively used in astronomy, e.g. Chianti, AtomDB, Cloudy and Xstar, cannot be directly applied to analyzing laboratory measurements due ...For the laboratory astrophysics community, those spectroscopic modeling codes extensively used in astronomy, e.g. Chianti, AtomDB, Cloudy and Xstar, cannot be directly applied to analyzing laboratory measurements due to their discrepancies from astrophysical cases. For example, plasma from an electron beam ion trap has an electron energy distribution that follows a Gaussian profile, instead of a Maxwellian one. The laboratory miniature for a compact object produced by a laser-driven implo- sion shows a departure from equilibrium, that often occurs in celestial objects, so we setup a spectral analysis system for astrophysical and laboratory (SASAL) plasmas to act as a bridge between them, which benefits the laboratory astrophysical community.展开更多
We investigate the long time existence of strong solutions to the initial value problem for the three-dimensional non-isentropic compressible Navier-Stokes-Korteweg system.Under the conditions of slight density and te...We investigate the long time existence of strong solutions to the initial value problem for the three-dimensional non-isentropic compressible Navier-Stokes-Korteweg system.Under the conditions of slight density and temperature variations,we verify that the full compressible Navier-Stokes-Korteweg equations admit a unique strong solution as long as the solution of the limiting system exists,when the Mach number is sufficiently small.Furthermore,we deduce the uniform convergence of strong solutions for the compressible system toward those for the corresponding incompressible system on the time interval in which the solution exists.展开更多
Aiming at the problems of information loss and the relationship between features and target tasks in multimodal medical image segmentation, a multimodal medical image segmentation algorithm based on feature decoupling...Aiming at the problems of information loss and the relationship between features and target tasks in multimodal medical image segmentation, a multimodal medical image segmentation algorithm based on feature decoupling and information bottleneck theory is proposed in this paper. Based on the reversible network, the bottom-up learning method for different modal information is constructed, which enhances the features’ expression ability and the network’s learning ability. The feature fusion module is designed to balance multi-directional information flow. To retain the information relevant to the target task to the maximum extent and suppress the information irrelevant to the target task, the feature decoupling module is designed to ensure a strong correlation between the feature and the target task. A loss function based on information bottleneck theory was intended to improve information quality and remove redundant information. Based on BraTs2021, BraTs2023-MET and ANNLIB datasets, the proposed algorithm is analyzed qualitatively and quantitatively in this paper. In the quantitative experiment, the Dice coefficient of the proposed algorithm was increased by 0.110 on average compared with other methods, and the HD95 was decreased by 28.568 on average compared with other methods. In qualitative analysis, the proposed algorithm can effectively segment the incoherent region between the lesion and the lesion boundary and achieve accurate segmentation of the lesion.展开更多
The mathematical model used to describe the detonation multi-physics phenomenon is usually given by highly coupled nonlinear partial differential equations. Numerical simulation and the computer aided engineering (CAE...The mathematical model used to describe the detonation multi-physics phenomenon is usually given by highly coupled nonlinear partial differential equations. Numerical simulation and the computer aided engineering (CAE) technique has become the third pillar of detonation research, along with theory and experiment, due to the detonation phenomenon is difficult to explain by the theoretical analysis, and the cost required to accredit the reliability of detonation products is very high, even some physical experiments of detonation are impossible. The numerical simulation technique can solve these complex problems in the real situation repeatedly and reduce the design cost and time stunningly. But the reliability of numerical simulation software and the serviceability of the computational result seriously hinders the extension, application and the self-restoration of the simulation software, restricts its independently innovational ability. This article deals with the physical modeling, numerical simulation, and software development of detonation in a unified way. Verification and validation and uncertainty quantification (V&V&UQ) is an important approach in ensuring the credibility of the modeling and simulation of detonation. V&V of detonation is based on our independently developed detonation multiphysics software-LAD2D. We propose the verification method based on mathematical theory and program function as well as availability of its program execution. Validation is executed by comparing with the experiment data. At last, we propose the future prospect of numerical simulation software and the CAE technique, and we also pay attention to the research direction of V&V&UQ.展开更多
Strong shock may induce complex processes in porous materials. We use the newly developed materialpoint-method to simulate such processes in an HMX-like material. To pick out relevant information, morphological charac...Strong shock may induce complex processes in porous materials. We use the newly developed materialpoint-method to simulate such processes in an HMX-like material. To pick out relevant information, morphological characterization is used to treat with the temperature map. Via the Minkowski funetional analysis the dynamics and thermodynamics of the shock wave reaction on porous HMX-like material are studied. The geometrical and topological properties of the "hot-spots" are revealed. Numerical results indicate that, shocks in porous materials are not simple jump states as classically viewed, but rather are a complex sequence of compressions and rarefactions. They cover a broad spectrum of states. We can use coarse-grained description to the wave series. A threshold value of temperature presents a Turing pattern dynamical procedure. A higher porosity is generally preferred when the energetic material needs a higher temperature for initiation. The technique of data analysis can be used to other physical quantities, for example, density, particle velocity, some specific stress, etc. From a series of studies along the line, one may get a large quantity of information for desiring the fabrication of material and choosing shock strength according to what needed is scattered or connected "hot-spots". PACS numbers: 05.70.Ln, 05 Key words: porous material 70.-a, 05.40.-a, 62.50.Ef shock wave, Minkowski functionals展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12205023,U2230401,12374056,U23A20537,11904027)。
文摘A thermodynamically complete multi-phase equation of state(EOS)applicable to both dense and porous metals at wide ranges of temperature and pressure is constructed.A standard three-term decomposition of the Helmholtz free energy as a function of specific volume and temperature is presented,where the cold component models both compression and expansion states,the thermal ion component introduces the Debye approximation and melting entropy,and the thermal electron component employs the Thomas-Fermi-Kirzhnits(TFK)model.The porosity of materials is considered by introducing the dynamic porosity coefficientαand the constitutive P-αrelation,connecting the thermodynamic properties between dense and porous systems,allowing for an accurate description of the volume decrease caused by void collapse while maintaining the quasi-static thermodynamic properties of porous systems identical to the dense ones.These models enable the EOS applicable and robust at wide ranges of temperature,pressure and porosity.A systematic evaluation of the new EOS is conducted with aluminum(Al)as an example.300 K isotherm,shock Hugoniot,as well as melting curves of both dense and porous Al are calculated,which shows great agreements with experimental data and validates the effectiveness of the models and the accuracy of parameterizations.Notably,it is for the first time Hugoniot P-σcurves up to 10~6 GPa and shock melting behaviors of porous Al are derived from analytical EOS models,which predict much lower compression limit and shock melting temperatures than those of dense Al.
基金support of the National Natural Science Foundation of China under Grant Nos.12372367 and 12202081the Special Foundation from the Institute of Fluid Physics of CAEP under Grant No.2022-YCHT-0641.
文摘This study uses nonequilibrium molecular dynamics simulations to explore the dynamic failures and deformation mechanisms of a cylindrical shell composed of nanocrystalline nickel-titanium alloy under implosion loading.We discover that some individual spall planes are sequentially generated in the material along the propagation of a radial stress wave,indicative of the formation of multiple spallation.For larger grain sizes,void nucleation at the first spallation occurs in a coexisting intergranular/transgranular manner,whereas with decreasing grain size,voids tend to nucleate along the grain boundaries.Correspondingly,the spall strength exhibits a transition from an inverse Hall-Petch to a Hall-Petch relationship.For larger grain sizes,at the secondary spallation,localized shearing zones and grain boundaries provide potential void-nucleated sites.Importantly,the formation of shear deformation bands promotes grain refinement,contributing to a reduction in the dislocation-induced strengthening effect.Consequently,a lower spall strength is produced,in contrast to the first spallation.As the grain size becomes smaller,voids nucleate mostly along grain boundaries,and plastic deformation is dominated by dense grain boundaries.Overall,the high temperature caused by shear localization leads to material weakening,and in turn there is a significant decrease in the spall strength for the secondary spallation,compared with the first.Finally,significant penetration between two spall planes is observed for large grain size,which can be attributed to the nucleation of voids on linking grain boundaries,with temperatures exceeding the melting point of the material.
基金supported by the National Natural Science Foundation of China(10732030)the 111 Project (B 07009)
文摘The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grids, under typical hovering and forward flight conditions. Both the interaction between the contralateral wings and the interaction between the body and wings are very weak, e.g. at hovering, changes in aerodynamic forces of a wing due to the present of the other wing are less than 3% and changes in aerodynamic forces of the wings due to presence of the body are less than 2%. The reason for this is as following. During each down- or up-stroke, a wing produces a vortex ring, which induces a relatively large jet-like flow inside the ring but very small flow outside the ring. The vortex rings of the left and right wings are on the two sides of the body. Thus one wing is outside vortex ring of the other wing and the body is outside the vortex rings of the left and right wings, resulting in the weak interactions.
基金the graduated students Zhixing Feng,Xiaoqiang Zhang,and Deli Fang for their excellent works to develop the PIC simulation codes of Z-pinch.This research was partly supported by the National Natural Science Foundation of China(Grant Nos.11675025 and 11135007)the Innovation Project of China Academy of Engineering Physics(Grant No.CX2019030).
文摘For investigating efficiently the stagnation kinetic-process of Z-pinch,we develop a novel modified electrostatic implicit particle-in-cell algorithm in radial one-dimension for Z-pinch simulation in which a small-angle cumulative binary collision algorithm is used.In our algorithm,the electric field in z-direction is solved by a parallel electrode-plate model,the azimuthal magnetic field is obtained by Ampere’s law,and the term for charged particle gyromotion is approximated by the cross product of the averaged velocity and magnetic field.In simulation results of 2 MA deuterium plasma shell Zpinch,the mass-center implosion trajectory agrees generally with that obtained by one-dimensional MHD simulation,and the plasma current also closely aligns with the external current.The phase space diagrams and radial-velocity probability distributions of ions and electrons are obtained.The main kinetic characteristic of electron motion is thermal equilibrium and oscillation,which should be oscillated around the ions,while that of ion motion is implosion inwards.In the region of stagnation radius,the radial-velocity probability distribution of ions transits from the non-equilibrium to equilibrium state with the current increasing,while of electrons is basically the equilibrium state.When the initial ion density and current peak are not high enough,the ions may not reach their thermal equilibrium state through collisions even in its stagnation phase.
基金supported by the Research Foundation for Higher Level Talents of West Anhui University(Grant No.WGKQ2021005).
文摘Employing two fully relativistic methods,the multi-reference configuration Dirac-Hartree-Fock(MCDHF)methodand the relativistic many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest35 energy levels of the(1s^(2))nl configurations(where the principal quantum number n=2-6 and the angular quantum numberl=0,...,n-1)of lithium-like germanium(Ge XXX),as well as complete data on the transition wavelengths,radiativerates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magneticdipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.The results from the two methodsare consistent with each other and align well with previous accurate experimental and theoretical findings.We assess theoverall accuracies of present RMBPT results to be likely the most precise ones to date.The present fully relativistic resultsshould be helpful for soft x-ray laser research,spectral line identification,plasma modeling and diagnosing.The datasetspresented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00135.
基金supported by the National Natural Science Foundation of China(No.12065003)the Guangxi Key R&D Project(2023AB07029)+1 种基金the Scientific Research and Technology Development Project of Guilin(20210104-2)the Central Government Guides Local Scientific and Technological Development Funds of China(Guike ZY22096024)。
文摘Based on the unified Hauser–Feshbach and exciton model,which can describe the particle emission processes between discrete energy levels with energy,angular momentum,and parity conservations,a statistical theory of light nucleus reaction(STLN)is developed to calculate the double-differential cross-sections of the outgoing neutron and light charged particles for the proton-induced^(6) Li reaction.A significant difference is observed between the p+^(6) Li and p+^(7) Li reactions owing to the discrepancies in the energy-level structures of the targets.The reaction channels,including sequential and simultaneous emission processes,are analyzed in detail.Taking the double-differential cross-sections of the outgoing proton as an example,the influence of contaminations(such as^(1) H,^(7)Li,^(12)C,and^(16)O)on the target is identified in terms of the kinetic energy of the first emitted particles.The optical potential parameters of the proton are obtained by fitting the elastic scattering differential cross-sections.The calculated total double-differential cross-sections of the outgoing proton and deuteron at E_(p)=14 MeV agree well with the experimental data for different outgoing angles.Simultaneously,the mixed double differential cross-sections of^(3) He andαare in good agreement with the measurements.The agreement between the measured data and calculated results indicates that the two-body and three-body breakup reactions need to be considered,and the pre-equilibrium reaction mechanism dominates the reaction processes.Based on the STLN model,a PLUNF code for the p+^(6) Li reaction is developed to obtain an ENDF-6-formatted file of the double-differential cross-sections of the nucleon and light composite charged particles.
基金supported by the National Natural Science Foundation of China(Grant Nos.U23A_(2)0537,U2230401,and 52371174)Funding of National Key Laboratory of Computational Physics.
文摘Based on ab initio calculations,we utilize the mean-field potential approach with the quantum modification in conjunction with stress–strain relation to investigate the elastic anisotropies and sound velocities of hcp and bcc Be under high-temperature(0–6000 K)and high-pressure(0–500 GPa)conditions.We propose a general definition of anisotropy for elastic moduli and sound velocities.Results suggest that the elastic anisotropy of Be is more significantly influenced by pressure than by temperature.The pressure-induced increase of c/a ratio makes the anisotropy of hcp Be significantly strengthen.Nevertheless,the hcp Be still exhibits smaller anisotropy than bcc Be in terms of elastic moduli and sound velocities.We suggest that measuring the anisotropy in shear sound velocity may be an approach to distinguishing the hcp–bcc phase transition under extreme conditions.
基金supported by the National Natural Science Foundation of China (Grant Nos.12202070 and 11772065)the Foundation of National Key Laboratory of Computational Physics.
文摘The interaction between shock waves and multiple cylinders,referred to as shock–cylinder interaction(SCI),is an important phenomenon in science and engineering.However,its underlying physical mechanisms remain unclear.This study entailed the numerical simulation of the aerobreakup of two tandem water columns subjected to a high-speed gas flow by using an adaptive mesh refinement(AMR)-based diffusion-interface model.The objective was to elucidate the changes in water–column deformation patterns over a wide range of Weber numbers.Statistical analysis was performed to examine the deformation of the water columns in vertical directions.Results reveal distinct deformation patterns between the two columns as the Weber number increases.Additionally,an extended exponential stretching law model was devised,and its improved capability to predict the deformation patterns was demonstrated.
基金Project supported by the Natural Science Foundation of Heilongjiang Province,China(Grant No.LH2022A026)the National Key Research and Development Program of China(Grant No.2022YFA1602500)+2 种基金the National Natural Science Foundation of China(Grant No.11934004)Fundamental Research Funds in Heilongjiang Province Universities,China(Grant No.145109309)Foundation of National Key Laboratory of Computational Physics(Grant No.6142A05QN22006)。
文摘The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molecular structure of SiS is limited.To obtain accurate information about the structure of its excited states,the high-precision multireference configuration interaction(MRCI)method has been utilized.This method is used to calculate the potential energy curves(PECs)of the 18Λ–S states corresponding to the lowest dissociation limit of SiS.The core–valence correlation effect,Davidson’s correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation.Based on the calculated PECs,the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results.The transition dipole moments(TDMs)and dipole moments(DMs)are determined by the MRCI method.In addition,the abrupt variations of the DMs for the 1^(5)Σ^(+)and 2^(5)Σ^(+)states at the avoided crossing point are attributed to the variation of the electronic configuration.The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures.With increasing temperature,the expanding population of excited states blurs the band boundaries.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12334010,12174259,and 11604003)。
文摘The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effect.It is found that the vibronic effect converts the dipole-forbidden excitation of the ^(1)A_(2) into a dipole-allowed one,which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region.The present investigation shows that the vibronic effect of H_(2)O is slightly stronger than that of D_(2)O,which exhibits a clear isotopic effect.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11975059 and 12005021)。
文摘A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.U2230401,U1930401,and 12004048)the National Key Research and Development Program of China (Grant No.2021YFB3501503)+1 种基金the Science Challenge Project (Grant No.TZ2018002)the Foundation of LCP。
文摘Hydride precipitation in zirconium cladding materials can damage their integrity and durability.Service temperature and material defects have a significant effect on the dynamic growth of hydrides.In this study,we have developed a phasefield model based on the assumption of elastic behaviour within a specific temperature range(613 K-653 K).This model allows us to study the influence of temperature and interfacial effects on the morphology,stress,and average growth rate of zirconium hydride.The results suggest that changes in temperature and interfacial energy influence the length-to-thickness ratio and average growth rate of the hydride morphology.The ultimate determinant of hydride orientation is the loss of interfacial coherency,primarily induced by interfacial dislocation defects and quantifiable by the mismatch degree q.An escalation in interfacial coherency loss leads to a transition of hydride growth from horizontal to vertical,accompanied by the onset of redirection behaviour.Interestingly,redirection occurs at a critical mismatch level,denoted as qc,and remains unaffected by variations in temperature and interfacial energy.However,this redirection leads to an increase in the maximum stress,which may influence the direction of hydride crack propagation.This research highlights the importance of interfacial coherency and provides valuable insights into the morphology and growth kinetics of hydrides in zirconium alloys.
基金supported by National Natural Science Foundation of China(Nos.12075219,12105269 and 12175210)。
文摘An experiment on 100 k J laser facility is performed to study the motive features and radiation properties of plasmas from different areas inside gas-filled cylindrical hohlraums.These hohlraums are designed to possess one open end and one laser entrance hole(LEH)with different diameters,which would or not result in the blocking of the LEH.An x-ray streak camera that is set at 16 degrees with respect to the hohlraum axis is applied to acquire the timeresolved x-ray images from the open end.Based on the images,we can study the evolutions of the wall plasma,corona bubble plasma and LEH plasma simultaneously through an equivalent view field of hohlraum interior.Multi-group flat response x-ray detectors are applied to measure the x-ray fluxes.In order to understand these characteristics,our two-dimensional radiation hydrodynamic code is used to simulate the experimental results.For the accuracy of reproduction,dielectronic recombination and two parameter corrections are applied in our code.Based on the comparison between experiments and simulations,we quantitatively understand the blocking process of LEH and the motion effects of other plasmas.The calibrated code is beneficial to design the gas-filled hohlraum in a nearby parameter space,especially the limit size of LEH.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12004351).
文摘A self-consistent and precise method to determine the time-dependent radiative albedo,i.e.,the ratio of the reemission flux to the incident flux,for an indirect-drive inertial confinement fusion Hohlraum wall material is proposed.A specially designed symmetrical triple-cavity gold Hohlraum is used to create approximately constant and near-equilibrium uniform radiation with a peak temperature of 160 eV.The incident flux at the secondary cavity waist is obtained from flux balance analysis and from the shock velocity of a standard sample.The results agree well owing to the symmetrical radiation in the secondary cavity.A self-consistent and precise time-dependent radiative albedo is deduced from the reliable reemission flux and the incident flux,and the result from the shock velocity is found to have a smaller uncertainty than that from the multi-angle flux balance analysis,and also to agree well with the result of a simulation using the HYADES opacity.
文摘Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 12 should have been 7,8,9 and 10.The original article has been corrected.
基金Supported by the National Natural Science Foundation of China
文摘For the laboratory astrophysics community, those spectroscopic modeling codes extensively used in astronomy, e.g. Chianti, AtomDB, Cloudy and Xstar, cannot be directly applied to analyzing laboratory measurements due to their discrepancies from astrophysical cases. For example, plasma from an electron beam ion trap has an electron energy distribution that follows a Gaussian profile, instead of a Maxwellian one. The laboratory miniature for a compact object produced by a laser-driven implo- sion shows a departure from equilibrium, that often occurs in celestial objects, so we setup a spectral analysis system for astrophysical and laboratory (SASAL) plasmas to act as a bridge between them, which benefits the laboratory astrophysical community.
文摘We investigate the long time existence of strong solutions to the initial value problem for the three-dimensional non-isentropic compressible Navier-Stokes-Korteweg system.Under the conditions of slight density and temperature variations,we verify that the full compressible Navier-Stokes-Korteweg equations admit a unique strong solution as long as the solution of the limiting system exists,when the Mach number is sufficiently small.Furthermore,we deduce the uniform convergence of strong solutions for the compressible system toward those for the corresponding incompressible system on the time interval in which the solution exists.
基金supported by the following grants:Beijing Natural Science Foundation(No.Z210003)National Natural Science Foundation of China(NSFC12026607)+2 种基金NationalNatural Science Foundation of China(NSFC12031016)KeyR&DProgramof the Scientific Research Department(2020YFA0712203)Key R&D Programof the Scientific ResearchDepartment(2020YFA0712201).
文摘Aiming at the problems of information loss and the relationship between features and target tasks in multimodal medical image segmentation, a multimodal medical image segmentation algorithm based on feature decoupling and information bottleneck theory is proposed in this paper. Based on the reversible network, the bottom-up learning method for different modal information is constructed, which enhances the features’ expression ability and the network’s learning ability. The feature fusion module is designed to balance multi-directional information flow. To retain the information relevant to the target task to the maximum extent and suppress the information irrelevant to the target task, the feature decoupling module is designed to ensure a strong correlation between the feature and the target task. A loss function based on information bottleneck theory was intended to improve information quality and remove redundant information. Based on BraTs2021, BraTs2023-MET and ANNLIB datasets, the proposed algorithm is analyzed qualitatively and quantitatively in this paper. In the quantitative experiment, the Dice coefficient of the proposed algorithm was increased by 0.110 on average compared with other methods, and the HD95 was decreased by 28.568 on average compared with other methods. In qualitative analysis, the proposed algorithm can effectively segment the incoherent region between the lesion and the lesion boundary and achieve accurate segmentation of the lesion.
基金supported by Science Challenge Project [No TZ2018001]Shandong Provincial Natural Science Foundation [No ZR2017BA014]+1 种基金National Natural Science Foundation of China [No91630312]the Development Program for Defense Ministry of China [No.C1520110002]
文摘The mathematical model used to describe the detonation multi-physics phenomenon is usually given by highly coupled nonlinear partial differential equations. Numerical simulation and the computer aided engineering (CAE) technique has become the third pillar of detonation research, along with theory and experiment, due to the detonation phenomenon is difficult to explain by the theoretical analysis, and the cost required to accredit the reliability of detonation products is very high, even some physical experiments of detonation are impossible. The numerical simulation technique can solve these complex problems in the real situation repeatedly and reduce the design cost and time stunningly. But the reliability of numerical simulation software and the serviceability of the computational result seriously hinders the extension, application and the self-restoration of the simulation software, restricts its independently innovational ability. This article deals with the physical modeling, numerical simulation, and software development of detonation in a unified way. Verification and validation and uncertainty quantification (V&V&UQ) is an important approach in ensuring the credibility of the modeling and simulation of detonation. V&V of detonation is based on our independently developed detonation multiphysics software-LAD2D. We propose the verification method based on mathematical theory and program function as well as availability of its program execution. Validation is executed by comparing with the experiment data. At last, we propose the future prospect of numerical simulation software and the CAE technique, and we also pay attention to the research direction of V&V&UQ.
基金Supported by Science Foundations of Laboratory of Computational Physics and China Academy of Engineering Physics under Grant Nos.2009A0102005 and 2009B0101012National Science Foundation of China under Grant Nos.10702010,10775018,and 10604010
文摘Strong shock may induce complex processes in porous materials. We use the newly developed materialpoint-method to simulate such processes in an HMX-like material. To pick out relevant information, morphological characterization is used to treat with the temperature map. Via the Minkowski funetional analysis the dynamics and thermodynamics of the shock wave reaction on porous HMX-like material are studied. The geometrical and topological properties of the "hot-spots" are revealed. Numerical results indicate that, shocks in porous materials are not simple jump states as classically viewed, but rather are a complex sequence of compressions and rarefactions. They cover a broad spectrum of states. We can use coarse-grained description to the wave series. A threshold value of temperature presents a Turing pattern dynamical procedure. A higher porosity is generally preferred when the energetic material needs a higher temperature for initiation. The technique of data analysis can be used to other physical quantities, for example, density, particle velocity, some specific stress, etc. From a series of studies along the line, one may get a large quantity of information for desiring the fabrication of material and choosing shock strength according to what needed is scattered or connected "hot-spots". PACS numbers: 05.70.Ln, 05 Key words: porous material 70.-a, 05.40.-a, 62.50.Ef shock wave, Minkowski functionals