期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-parameter ultrasound imaging for musculoskeletal tissues based on a physics informed generative adversarial network
1
作者 Pengxin Wang Heyu Ma +3 位作者 Tianyu Liu Chengcheng Liu Dan Li Dean Ta 《Chinese Physics B》 2025年第4期442-455,共14页
Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process... Full waveform inversion(FWI)has showed great potential in the detection of musculoskeletal disease.However,FWI is an ill-posed inverse problem and has a high requirement on the initial model during the imaging process.An inaccurate initial model may lead to local minima in the inversion and unexpected imaging results caused by cycle-skipping phenomenon.Deep learning methods have been applied in musculoskeletal imaging,but need a large amount of data for training.Inspired by work related to generative adversarial networks with physical informed constrain,we proposed a method named as bone ultrasound imaging with physics informed generative adversarial network(BUIPIGAN)to achieve unsupervised multi-parameter imaging for musculoskeletal tissues,focusing on speed of sound(SOS)and density.In the in-silico experiments using a ring array transducer,conventional FWI methods and BUIPIGAN were employed for multiparameter imaging of two musculoskeletal tissue models.The results were evaluated based on visual appearance,structural similarity index measure(SSIM),signal-to-noise ratio(SNR),and relative error(RE).For SOS imaging of the tibia–fibula model,the proposed BUIPIGAN achieved accurate SOS imaging with best performance.The specific quantitative metrics for SOS imaging were SSIM 0.9573,SNR 28.70 dB,and RE 5.78%.For the multi-parameter imaging of the tibia–fibula and human forearm,the BUIPIGAN successfully reconstructed SOS and density distributions with SSIM above 94%,SNR above 21 dB,and RE below 10%.The BUIPIGAN also showed robustness across various noise levels(i.e.,30 dB,10 dB).The results demonstrated that the proposed BUIPIGAN can achieve high-accuracy SOS and density imaging,proving its potential for applications in musculoskeletal ultrasound imaging. 展开更多
关键词 ultrasound image physics informed generative adversarial network musculoskeletal imaging
在线阅读 下载PDF
液态栓塞剂栓塞脑动静脉畸形的计算流体力学建模与仿真
2
作者 张博文 陈曦 +3 位作者 张晓龙 丁光宏 葛亮 王盛章 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第1期281-295,共15页
大脑动静脉畸形(AVMs)的血管内栓塞通常需要注射液态栓塞剂(LEAs)以减少畸形处的血流.在临床实践中,需要事先仔细规划注射LEAs的供血动脉以及LEAs的剂量.计算流体动力学可以模拟LEAs在畸形团内的注射过程,并在术前评估不同操作的治疗效... 大脑动静脉畸形(AVMs)的血管内栓塞通常需要注射液态栓塞剂(LEAs)以减少畸形处的血流.在临床实践中,需要事先仔细规划注射LEAs的供血动脉以及LEAs的剂量.计算流体动力学可以模拟LEAs在畸形团内的注射过程,并在术前评估不同操作的治疗效果.应用多孔介质模型避免了AVMs的几何建模困难,并重现了血管瘤内复杂的血管网络结构.采用多相流模拟了LEAs与血液之间的相互作用.LEAs的黏度由其溶质乙烯-乙醇共聚物(EVOH)的浓度确定.通过求解物质输运方程计算了溶剂二甲基亚矾(DMSO)的扩散过程.通过构建EVOH浓度与黏度之间的关系,模拟了LEAs的凝固过程.LEAs的注射和凝固的数值模拟方法在两个特定患者的AVMs上进行了测试。计算预测了LEAs在畸形团内的流动方向。通过三维染可以很好地可视化注射的LEAs的形态.进行了定量分析,包括供血动脉和引流静脉的流量变化.利用计算流体动力学(CFD)方法可以模拟LEAs栓塞AVMs的过程,以展示不同栓塞手术规划的治疗效果,并确定最佳治疗方案. 展开更多
关键词 最佳治疗方案 供血动脉 血管内栓塞 脑动静脉畸形 计算流体力学 计算流体动力学 注射过程 血管瘤
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部