The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression...The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression ratio.Moreover,the following influential factors have been taken into account:evaporation temperature,condensation temperature and compressor suction-exhaust pressure ratio for different opening conditions of the compressor.The following quantities have been selected as the unit performance measurement indicators:refrigeration capacity,energy efficiency ratio(COP),compressor power consumption,and refrigerant flow rate.The experimental results indicate that the system refrigeration capacity and COP decrease with a decrease in evaporation temperature,increase of condensation temperature,and increase in pressure ratio.The refrigerant flow rate increases with the increase in evaporation temperature,decrease in condensing temperature and increase in pressure ratio.The compressor power consumption increases with the increase in condensing temperature and increase in pressure ratio,but is not significantly affected by the evaporation temperature.展开更多
Beam-column or beam-wall connections are an important problem in high-rise buildings. In this study, based on the analysis of an example structure, an analytical model for design of the semi-rigid connections between ...Beam-column or beam-wall connections are an important problem in high-rise buildings. In this study, based on the analysis of an example structure, an analytical model for design of the semi-rigid connections between steel beams and RC walls in high-rise hybrid buildings is proposed. Also, the mechanical characteristics of these connections subjected to low-reversed cyclic loading are investigated through comparison of experimental results from three semi-rigid connections and two rigid connections. Moreover, some latent problems for design of these connections as well as the corresponding solutions are discussed. The results from the experiments and analyses indicate that semi-rigid connections exhibit satisfactory capacity and seismic performance, and the proposed design can be used in practice.展开更多
The paper mainly summarized the developments on structural aseismic theory, aseismic analysis and design of reinforced concrete structure, lifeline system, several another kinds of structures, site and structure found...The paper mainly summarized the developments on structural aseismic theory, aseismic analysis and design of reinforced concrete structure, lifeline system, several another kinds of structures, site and structure foundation, structure mitigation and isolation of vibration in China in recent four years. This is the introduction of recent re-search results of Chinese professionals for international organizations and professionals. At the same time, it provides numerous abstract materials for colleagues to realize the trend of the structural aseismic theory and re-search range needing more study.展开更多
With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance c...With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance concrete(UHPC)in both civil and military protective structures,a comparative study on the impact performance of SC formed jet on UHPC target is performed experimentally and numerically at present.Firstly,a series of jet penetration/perforation test on the UHPC,45# steel and UHPC/45# steel composite targets are conducted.By assessing the penetration depth and borehole(crater and tunnel)diameter,the influences of target material and configuration as well as the standoff distance of SC on the impact performance of jet are experimentally discussed.Then,by adopting the 2 D multi-material Arbitrary Lagrange-Euler(ALE)algorithm,Fluid-Structure Interaction(FSI)method and erosion algorithm implemented in the finite element code LS-DYNA,the formation and impact performance of jet in the present test are well reproduced.Finally,based on the validated numerical algorithms,constitutive models and the corresponding parameters,the influences of target material(UHPC,NSC and 45# steel),standoff distance,target configuration(stacked and spaced)and weight efficiency on the impact performance of jet are further discussed.The derived conclusions could provide helpful references for evaluating the ballistic performance of jet and designing the protective structures.展开更多
In this paper, a full-scale 3-D finite element model of the Jundushan cable-stayed aqueduct bridge is established with ANSYS Code. The shell, fluid, tension-only spar and beam elements are used for modeling the aquedu...In this paper, a full-scale 3-D finite element model of the Jundushan cable-stayed aqueduct bridge is established with ANSYS Code. The shell, fluid, tension-only spar and beam elements are used for modeling the aqueduct deck, filled water, cables and support towers, respectively. A multi-element cable formulation is introduced to simulate the cable vibration. The dry (without water) and wet (with water) modes of the aqueduct bridge are both extracted and investigated in detail. The dry modes of the aqueduct bridge are basically similar to those of highway cable-stayed bridges. A dry mode may correspond to two types of wet modes, which are called the in-phase (with lower frequency) and out-of-phase (with higher frequency) modes. When the water-structure system vibrates in the in-phase/out-of-phase modes, the aqueduct deck moves and water sloshes in the same/opposite phase-angle, and the sloshing water may take different surface-wave modes. The wet modes of the system reflect the properties of interaction among the deck, towers, cables and water. The in-phase wet frequency generally decreases as the water depth increases, and the out-of-phase wet frequency may increase or decrease as the water depth increases.展开更多
The interface defeat phenomenon always occurs when a long-rod projectile impacting on the ceramic target with certain velocity,i.e.,the projectile is forced to flow radially on the surface of ceramic plates for a peri...The interface defeat phenomenon always occurs when a long-rod projectile impacting on the ceramic target with certain velocity,i.e.,the projectile is forced to flow radially on the surface of ceramic plates for a period of time without significant penetration.Interface defeat has a direct effect upon the ballistic performance of the armor piercing projectile,which is studied numerically and theoretically at present.Firstly,by modeling the projectiles and ceramic targets with the SPH(Smoothed Particle Hydrodynamics)particles and Lagrange finite elements,the systematic numerical simulations on interface defeat are performed with the commercial finite element program AUTODYN.Three different responses,i.e.,complete interface defeat,dwell and direct penetration,are reproduced in different types of ceramic targets(bare,buffered,radially confined and oblique).Furthermore,by adopting the validated numerical algorithms,constitutive models and the corresponding material parameters,the influences of projectile(material,diameter,nose shape),constitutive models of ceramic(JH-1 and JH-2 models),buffer and cover plate(thickness,constraints,material),as well as the prestress acted on the target(radial and hydrostatic) on the interface defeat(transition velocity and dwell time) are syste matically investigated.Finally,based on the energy conservation approach and taking the strain rate effect of ceramic material into account,a modified model for predicting the upper limit of transition velocity is proposed and validated.The present work and derived conclusions can provide helpful reference for the design and optimization of both the long-rod projectile and ceramic armor.展开更多
Shanghai Changjiang Tunnel, 15 m in diameter, is one of the world's largest shield-driven tunnels in diameter. Tongji University has recently carried out a test on the full-scale three-ring lining structure of Changj...Shanghai Changjiang Tunnel, 15 m in diameter, is one of the world's largest shield-driven tunnels in diameter. Tongji University has recently carried out a test on the full-scale three-ring lining structure of Changjiang Tunnel. This paper introduces the testing processes, including loading apparatuses, test contents, test cases, etc., and makes comparison with other shield lining structure tests conducted before, and finally gives some evaluations on the design of the tunnel.展开更多
A moving rigid-body and an unrestrained Timoshenko beam, which is subjected to the transverse impact of the rigid-body, are treated as a contact-impact system. The generalized Fourier-series method was used to derive ...A moving rigid-body and an unrestrained Timoshenko beam, which is subjected to the transverse impact of the rigid-body, are treated as a contact-impact system. The generalized Fourier-series method was used to derive the characteristic equation and the characteristic function of the system. The analytical solutions of the impact responses for the system were presented. The responses can be divided into two parts: elastic responses and rigid responses. The momentum sum of elastic responses of the contact-impact system is demonstrated to be zero, which makes the rigid responses of the system easy to evaluate according to the principle of momentum conservation.展开更多
The concept of structure-soil-structure dynamic interaction was introduced and the research methods were summarized.Based on lots of documents,a systematic summary of the history and current situation of structure-soi...The concept of structure-soil-structure dynamic interaction was introduced and the research methods were summarized.Based on lots of documents,a systematic summary of the history and current situation of structure-soil-structure dynamic interaction research considering adjacent structures was proposed as reference for researchers.The existing matter and the prospect of future research trend in this field was also examined.展开更多
Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Inf...Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenehuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.展开更多
The relative sensitivities of structural dynamical parameters were analyzed using a directive derivation method. The neural network is able to approximate arbitrary nonlinear mapping relationship, so it is a powerful ...The relative sensitivities of structural dynamical parameters were analyzed using a directive derivation method. The neural network is able to approximate arbitrary nonlinear mapping relationship, so it is a powerful damage identification tool for unknown systems. A neural network-based approach was presented for the structural damage detection. The combined parameters were presented as the input vector of the neural network, which computed with the change rates of the several former natural frequencies ( C), the change ratios of the frequencies ( R), and the assurance criterions of flexibilities (A). Some numerical simulation examples, such as, cantilever and truss with different damage extends and different damage locations were analyzed. The results indicate that the combined parameters are more suitable for the input patterns of neural networks than the other parameters alone.展开更多
By using the formula derived in Part ( Ⅰ ), the instant response of an unrestrained planar frame structure subjected to the impact of a moving rigid-body are evaluated and analysed. The impact force-time history be...By using the formula derived in Part ( Ⅰ ), the instant response of an unrestrained planar frame structure subjected to the impact of a moving rigid-body are evaluated and analysed. The impact force-time history between the structure and the moving rigid-body, shear force and bending moment distribution along the beams, axial force distribution along the bars were calculated. The wave propagation phenomena of the longitudinal wave in the bars, the flexural and shear waves in the beams were also analysed. The numerical results show that the time duration of impact force is controlled by the flexural wave and the longitudinal wave ; the shear effect in beams should not be neglected in the impact response analysis of structures.展开更多
A modified spherical cavity-expansion model is developed in this paper.(1) We introduce a piecewise hyperbolic yield criterion suitable for pressure less than fc/3 to describe the mechanical behavior in the elastic re...A modified spherical cavity-expansion model is developed in this paper.(1) We introduce a piecewise hyperbolic yield criterion suitable for pressure less than fc/3 to describe the mechanical behavior in the elastic region for the elastic-plastic response and modify the crack occurrence condition for the elastic-cracked-plastic response.(2) The hyperbolic yield criterion and a piecewise equation of state (EOS) are adopted for a better description of the plastic behavior of concrete material. Then, the modified model is validated by several projectile penetration tests in both the normal strength concrete (NSC) and ultra-high performance cement-based composite (UHPCC) targets. Finally, the hydrostatic pressure of the targets under rigid ogive-nosed projectile penetrations is found to be nearly within (0, 1.6 GPa), which usually exceeds the range that the shear strength-pressure test data covered. The influence of yield criterion on depth of penetration is discussed and it is recommended that the pressure should arrive at least 400 MPa in the related triaxial compression tests.展开更多
It is well known that there are some torsional damages in earthquakes. In Taibai park, Jiangyou city, Sichuan province, most of the stone statues, which were placed upon the banisters of one zigzag bridge, exhibited d...It is well known that there are some torsional damages in earthquakes. In Taibai park, Jiangyou city, Sichuan province, most of the stone statues, which were placed upon the banisters of one zigzag bridge, exhibited different torsional phenomena in 2008 Wenchuan earthquake. This paper introduces the torsional phenomena of all the statues on the zigzag bridge firstly. Then one eccentric- ity model is established and the equivalent rotational accelerations are calculated in order to analyze the causes of the torsional damage. In addition, the torsional components are synthesized by using translation accelerations recorded at Jiangyou station in the Wenchuan earthquake. The results show that the equivalent rotational acceleration is larger than the synthesized rotational components, which sug- gests that the torsional phenomena of the statues on the zigzag bridge might mainly come from its eccentricity. The comparison between the estimated torsional component at Jiangyou and that presented by Trifunac shows that they are in the same order. The research im- plies that the torsional phenomena in earthquakes are very complicated, and not only caused by torsional motions.展开更多
Smoothed particle hydrodynamics(SPH) is a mesh-free adaptive Lagrangian particle method with attractive features for dealing with the free surface flow.This paper applies the SPH method to simulate the large-amplitu...Smoothed particle hydrodynamics(SPH) is a mesh-free adaptive Lagrangian particle method with attractive features for dealing with the free surface flow.This paper applies the SPH method to simulate the large-amplitude lateral sloshing both with and without a floating body,and the vertical parametrically-excited sloshing in a two-dimensional tank.The numerical results show that the SPH approach has an obvious advantage over conventional mesh-based methods in handling nonlinear sloshing problems such as violent fluid-solid interaction,and flow separation and wave-breaking on the free fluid surface.The SPH method provides a new alternative and an effective way to solve these special strong nonlinear sloshing problems.展开更多
The differences between finite deformation and infinitesimal deformation are discussed. They are exercised on elasto-viscoplastic constitutive relations of concrete. Then, a rate-dependent mechanics model was presente...The differences between finite deformation and infinitesimal deformation are discussed. They are exercised on elasto-viscoplastic constitutive relations of concrete. Then, a rate-dependent mechanics model was presented on the basis of Ottosen's four-parameter yield criterion, where different loading surface transferring laws were taken into account, when material was in hardening stage or in softening stage, respectively. The model is well established, so that it can be applied to simulate the response of concrete subject to impact loading. Green-Naghdi stress rate was introduced as objective stress rate. Appropriate hypothesis was postulated in accordance with many experimental results, which could reflect the mechanical behaviour of concrete with large deformation. Available thoughts as well as effective methods are also provided for the research on related engineering problems.展开更多
基金supported by the National Natural Science Foundation of China(No.41877251)the Key project of Natural Science Foundation of Tianjin City(No.6JCZDJC39000).
文摘The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression ratio.Moreover,the following influential factors have been taken into account:evaporation temperature,condensation temperature and compressor suction-exhaust pressure ratio for different opening conditions of the compressor.The following quantities have been selected as the unit performance measurement indicators:refrigeration capacity,energy efficiency ratio(COP),compressor power consumption,and refrigerant flow rate.The experimental results indicate that the system refrigeration capacity and COP decrease with a decrease in evaporation temperature,increase of condensation temperature,and increase in pressure ratio.The refrigerant flow rate increases with the increase in evaporation temperature,decrease in condensing temperature and increase in pressure ratio.The compressor power consumption increases with the increase in condensing temperature and increase in pressure ratio,but is not significantly affected by the evaporation temperature.
基金National Natural Science Foundation of China Under Grant No. 50025821
文摘Beam-column or beam-wall connections are an important problem in high-rise buildings. In this study, based on the analysis of an example structure, an analytical model for design of the semi-rigid connections between steel beams and RC walls in high-rise hybrid buildings is proposed. Also, the mechanical characteristics of these connections subjected to low-reversed cyclic loading are investigated through comparison of experimental results from three semi-rigid connections and two rigid connections. Moreover, some latent problems for design of these connections as well as the corresponding solutions are discussed. The results from the experiments and analyses indicate that semi-rigid connections exhibit satisfactory capacity and seismic performance, and the proposed design can be used in practice.
基金National Naturel Science Foundation of China (59678048 and 50178055).
文摘The paper mainly summarized the developments on structural aseismic theory, aseismic analysis and design of reinforced concrete structure, lifeline system, several another kinds of structures, site and structure foundation, structure mitigation and isolation of vibration in China in recent four years. This is the introduction of recent re-search results of Chinese professionals for international organizations and professionals. At the same time, it provides numerous abstract materials for colleagues to realize the trend of the structural aseismic theory and re-search range needing more study.
基金supported by the National Natural Science Foundation of China (51438003,51878507)
文摘With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance concrete(UHPC)in both civil and military protective structures,a comparative study on the impact performance of SC formed jet on UHPC target is performed experimentally and numerically at present.Firstly,a series of jet penetration/perforation test on the UHPC,45# steel and UHPC/45# steel composite targets are conducted.By assessing the penetration depth and borehole(crater and tunnel)diameter,the influences of target material and configuration as well as the standoff distance of SC on the impact performance of jet are experimentally discussed.Then,by adopting the 2 D multi-material Arbitrary Lagrange-Euler(ALE)algorithm,Fluid-Structure Interaction(FSI)method and erosion algorithm implemented in the finite element code LS-DYNA,the formation and impact performance of jet in the present test are well reproduced.Finally,based on the validated numerical algorithms,constitutive models and the corresponding parameters,the influences of target material(UHPC,NSC and 45# steel),standoff distance,target configuration(stacked and spaced)and weight efficiency on the impact performance of jet are further discussed.The derived conclusions could provide helpful references for evaluating the ballistic performance of jet and designing the protective structures.
基金National Natural Science Foundation of China Under Grant No.50678121Open Research Fund Program of State key Laboratory of Hydro-science and Engineering
文摘In this paper, a full-scale 3-D finite element model of the Jundushan cable-stayed aqueduct bridge is established with ANSYS Code. The shell, fluid, tension-only spar and beam elements are used for modeling the aqueduct deck, filled water, cables and support towers, respectively. A multi-element cable formulation is introduced to simulate the cable vibration. The dry (without water) and wet (with water) modes of the aqueduct bridge are both extracted and investigated in detail. The dry modes of the aqueduct bridge are basically similar to those of highway cable-stayed bridges. A dry mode may correspond to two types of wet modes, which are called the in-phase (with lower frequency) and out-of-phase (with higher frequency) modes. When the water-structure system vibrates in the in-phase/out-of-phase modes, the aqueduct deck moves and water sloshes in the same/opposite phase-angle, and the sloshing water may take different surface-wave modes. The wet modes of the system reflect the properties of interaction among the deck, towers, cables and water. The in-phase wet frequency generally decreases as the water depth increases, and the out-of-phase wet frequency may increase or decrease as the water depth increases.
基金supported by the National Natural Science Foundation of China(51878507)。
文摘The interface defeat phenomenon always occurs when a long-rod projectile impacting on the ceramic target with certain velocity,i.e.,the projectile is forced to flow radially on the surface of ceramic plates for a period of time without significant penetration.Interface defeat has a direct effect upon the ballistic performance of the armor piercing projectile,which is studied numerically and theoretically at present.Firstly,by modeling the projectiles and ceramic targets with the SPH(Smoothed Particle Hydrodynamics)particles and Lagrange finite elements,the systematic numerical simulations on interface defeat are performed with the commercial finite element program AUTODYN.Three different responses,i.e.,complete interface defeat,dwell and direct penetration,are reproduced in different types of ceramic targets(bare,buffered,radially confined and oblique).Furthermore,by adopting the validated numerical algorithms,constitutive models and the corresponding material parameters,the influences of projectile(material,diameter,nose shape),constitutive models of ceramic(JH-1 and JH-2 models),buffer and cover plate(thickness,constraints,material),as well as the prestress acted on the target(radial and hydrostatic) on the interface defeat(transition velocity and dwell time) are syste matically investigated.Finally,based on the energy conservation approach and taking the strain rate effect of ceramic material into account,a modified model for predicting the upper limit of transition velocity is proposed and validated.The present work and derived conclusions can provide helpful reference for the design and optimization of both the long-rod projectile and ceramic armor.
文摘Shanghai Changjiang Tunnel, 15 m in diameter, is one of the world's largest shield-driven tunnels in diameter. Tongji University has recently carried out a test on the full-scale three-ring lining structure of Changjiang Tunnel. This paper introduces the testing processes, including loading apparatuses, test contents, test cases, etc., and makes comparison with other shield lining structure tests conducted before, and finally gives some evaluations on the design of the tunnel.
文摘A moving rigid-body and an unrestrained Timoshenko beam, which is subjected to the transverse impact of the rigid-body, are treated as a contact-impact system. The generalized Fourier-series method was used to derive the characteristic equation and the characteristic function of the system. The analytical solutions of the impact responses for the system were presented. The responses can be divided into two parts: elastic responses and rigid responses. The momentum sum of elastic responses of the contact-impact system is demonstrated to be zero, which makes the rigid responses of the system easy to evaluate according to the principle of momentum conservation.
文摘The concept of structure-soil-structure dynamic interaction was introduced and the research methods were summarized.Based on lots of documents,a systematic summary of the history and current situation of structure-soil-structure dynamic interaction research considering adjacent structures was proposed as reference for researchers.The existing matter and the prospect of future research trend in this field was also examined.
基金the partial financial support from Kwang-Hua Fund for College of Civil Engineering,Tongji Universitythe National Natural Science Foundation of China(Grant No.51078274,51021140006)
文摘Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenehuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.
文摘The relative sensitivities of structural dynamical parameters were analyzed using a directive derivation method. The neural network is able to approximate arbitrary nonlinear mapping relationship, so it is a powerful damage identification tool for unknown systems. A neural network-based approach was presented for the structural damage detection. The combined parameters were presented as the input vector of the neural network, which computed with the change rates of the several former natural frequencies ( C), the change ratios of the frequencies ( R), and the assurance criterions of flexibilities (A). Some numerical simulation examples, such as, cantilever and truss with different damage extends and different damage locations were analyzed. The results indicate that the combined parameters are more suitable for the input patterns of neural networks than the other parameters alone.
文摘By using the formula derived in Part ( Ⅰ ), the instant response of an unrestrained planar frame structure subjected to the impact of a moving rigid-body are evaluated and analysed. The impact force-time history between the structure and the moving rigid-body, shear force and bending moment distribution along the beams, axial force distribution along the bars were calculated. The wave propagation phenomena of the longitudinal wave in the bars, the flexural and shear waves in the beams were also analysed. The numerical results show that the time duration of impact force is controlled by the flexural wave and the longitudinal wave ; the shear effect in beams should not be neglected in the impact response analysis of structures.
基金the National Natural Science Foundations of China (Grants 51522813 and 51438003).
文摘A modified spherical cavity-expansion model is developed in this paper.(1) We introduce a piecewise hyperbolic yield criterion suitable for pressure less than fc/3 to describe the mechanical behavior in the elastic region for the elastic-plastic response and modify the crack occurrence condition for the elastic-cracked-plastic response.(2) The hyperbolic yield criterion and a piecewise equation of state (EOS) are adopted for a better description of the plastic behavior of concrete material. Then, the modified model is validated by several projectile penetration tests in both the normal strength concrete (NSC) and ultra-high performance cement-based composite (UHPCC) targets. Finally, the hydrostatic pressure of the targets under rigid ogive-nosed projectile penetrations is found to be nearly within (0, 1.6 GPa), which usually exceeds the range that the shear strength-pressure test data covered. The influence of yield criterion on depth of penetration is discussed and it is recommended that the pressure should arrive at least 400 MPa in the related triaxial compression tests.
基金supported by the National Natural Science Foundation of China (No. 50578125)
文摘It is well known that there are some torsional damages in earthquakes. In Taibai park, Jiangyou city, Sichuan province, most of the stone statues, which were placed upon the banisters of one zigzag bridge, exhibited different torsional phenomena in 2008 Wenchuan earthquake. This paper introduces the torsional phenomena of all the statues on the zigzag bridge firstly. Then one eccentric- ity model is established and the equivalent rotational accelerations are calculated in order to analyze the causes of the torsional damage. In addition, the torsional components are synthesized by using translation accelerations recorded at Jiangyou station in the Wenchuan earthquake. The results show that the equivalent rotational acceleration is larger than the synthesized rotational components, which sug- gests that the torsional phenomena of the statues on the zigzag bridge might mainly come from its eccentricity. The comparison between the estimated torsional component at Jiangyou and that presented by Trifunac shows that they are in the same order. The research im- plies that the torsional phenomena in earthquakes are very complicated, and not only caused by torsional motions.
基金National Science Foundation of China under Grant No. 51279133Open Research Fund Program of State Key Laboratory of Hydro-science and Engineering under Grant No. SKLHSE-2011-C-02
文摘Smoothed particle hydrodynamics(SPH) is a mesh-free adaptive Lagrangian particle method with attractive features for dealing with the free surface flow.This paper applies the SPH method to simulate the large-amplitude lateral sloshing both with and without a floating body,and the vertical parametrically-excited sloshing in a two-dimensional tank.The numerical results show that the SPH approach has an obvious advantage over conventional mesh-based methods in handling nonlinear sloshing problems such as violent fluid-solid interaction,and flow separation and wave-breaking on the free fluid surface.The SPH method provides a new alternative and an effective way to solve these special strong nonlinear sloshing problems.
文摘The differences between finite deformation and infinitesimal deformation are discussed. They are exercised on elasto-viscoplastic constitutive relations of concrete. Then, a rate-dependent mechanics model was presented on the basis of Ottosen's four-parameter yield criterion, where different loading surface transferring laws were taken into account, when material was in hardening stage or in softening stage, respectively. The model is well established, so that it can be applied to simulate the response of concrete subject to impact loading. Green-Naghdi stress rate was introduced as objective stress rate. Appropriate hypothesis was postulated in accordance with many experimental results, which could reflect the mechanical behaviour of concrete with large deformation. Available thoughts as well as effective methods are also provided for the research on related engineering problems.