Hydraulic simulation is one of the critical methods to research the filling mechanism of molten metal in the casting process.However,it only performs on test pieces with relatively simple structures due to the limitat...Hydraulic simulation is one of the critical methods to research the filling mechanism of molten metal in the casting process.However,it only performs on test pieces with relatively simple structures due to the limitation of the preparation method.In this study,the method of photocuring additive manufacturing was used to prepare the complex casting mould from transparent photosensitive resin.The pouring test was carried out under different centrifugal conditions,and the filling process of the gating system,support bars and other positions in the vertical direction was recorded and analyzed.The experimental results show that the internal liquid level and the filling process of the test piece prepared by this method can be observed clearly.The angle between the liquid surface and the horizontal plane in the test piece gradually increases as the centrifugal rotational speed increases,which means the filling process is carried out from outside to inside at high rotational speed.The velocity of the fluid entering the runner increases with the increase of rotational speed,but the filling speeds is less affected by the centrifugal speed at other positions.The liquid flow is continuous and stable during the forward filling process,without splashing or interruption of liquid droplets.展开更多
Due to the extensive application of Al-Si alloys in the automotive and aerospace industries as structural components, an understanding of their microstructural formation, such as dendrite and(Al+Si) eutectic, is of gr...Due to the extensive application of Al-Si alloys in the automotive and aerospace industries as structural components, an understanding of their microstructural formation, such as dendrite and(Al+Si) eutectic, is of great importance to control the desirable microstructure, so as to modify the performance of castings. Since previous major themes of microstructural simulation are dendrite and regular eutectic growth, few efforts have been paid to simulate the irregular eutectic growth. Therefore, a multiphase cellular automaton(CA) model is developed and applied to simulate the time-dependent Al-Si irregular eutectic growth. Prior to model establishment, related experiments were carried out to investigate the influence of cooling rate and Sr modification on the growth of eutectic Si. This CA model incorporates several aspects, including growth algorithms and nucleation criterion, to achieve the competitive and cooperative growth mechanism for nonfaceted-faceted Al-Si irregular eutectic. The growth kinetics considers thermal undercooling, constitutional undercooling, and curvature undercooling, as well as the anisotropic characteristic of eutectic Si growth. The capturing rule takes into account the effects of modification on the silicon growth behaviors.The simulated results indicate that for unmodified alloy, the higher eutectic undercooling results in the higher eutectic growth velocity, and a more refined eutectic microstructure as well as narrower eutectic lamellar spacing. For modified alloy, the eutectic silicon tends to be obvious fibrous morphology and the morphology of eutectic Si is determined by both chemical modifier and cooling rate. The predicted microstructure of Al-7Si alloy under different solidification conditions shows that this proposed model can successfully reproduce both dendrite and eutectic microstructures.展开更多
Ceramic cores are widely used in investment casting,and ideal properties of cores are essential for high-quality castings.Under the circumstances requiring thick cores,solid cores are likely to encounter deformation a...Ceramic cores are widely used in investment casting,and ideal properties of cores are essential for high-quality castings.Under the circumstances requiring thick cores,solid cores are likely to encounter deformation and cracking defects due to the accumulation of shrinkage.Therefore,with the superiority of ceramic stereolithography in producing complex ceramic parts,hollow cores with lattice structures were designed and fabricated.The dimensional accuracy and properties of the green and sintered bodies were evaluated.Results show the dimensional accuracy of sintered cores is controlled within±0.25 mm benefited from the precise green bodies.The mechanical properties are not obviously deteriorated.The bending strength reaches 11.94 MPa at room temperature and 12.87 MPa at 1,500℃ with a creep deformation of 0.345 mm.Furthermore,casting verifications prove that the hollow cores meet the requirements of investment casting.Smooth casting surfaces are obtained,at the same time,the core-removal efficiency is improved by over 3 times.展开更多
Pd80+xSi20-x (x=0,1,and 2) binary metallic glasses with the diameter ranging from 7 to 8 mm were prepared by a combination of fluxing and water quenching or air cooling. Thermal analysis results show that with increas...Pd80+xSi20-x (x=0,1,and 2) binary metallic glasses with the diameter ranging from 7 to 8 mm were prepared by a combination of fluxing and water quenching or air cooling. Thermal analysis results show that with increasing Si content,the glass transition temperature Tg,the initial crystallization temperature Tx and the onset crystalliza-tion temperature Tp of Pd-Si binary glassy alloys increase. Moreover,the super-cooled liquid region reaches 61 K. It indicates that Pd-Si binary alloys possess large glass forming ability,which can be greatly improved by fluxing treatment.展开更多
基金This work was financially supported by the National Science and Technology Major Project of China(Grant No.J2019-Ⅶ-0002-0142)the National Natural Science Foundation of China(Grant No.52175333).
文摘Hydraulic simulation is one of the critical methods to research the filling mechanism of molten metal in the casting process.However,it only performs on test pieces with relatively simple structures due to the limitation of the preparation method.In this study,the method of photocuring additive manufacturing was used to prepare the complex casting mould from transparent photosensitive resin.The pouring test was carried out under different centrifugal conditions,and the filling process of the gating system,support bars and other positions in the vertical direction was recorded and analyzed.The experimental results show that the internal liquid level and the filling process of the test piece prepared by this method can be observed clearly.The angle between the liquid surface and the horizontal plane in the test piece gradually increases as the centrifugal rotational speed increases,which means the filling process is carried out from outside to inside at high rotational speed.The velocity of the fluid entering the runner increases with the increase of rotational speed,but the filling speeds is less affected by the centrifugal speed at other positions.The liquid flow is continuous and stable during the forward filling process,without splashing or interruption of liquid droplets.
基金financially supported by the National Basic Research Program of China(Grant No.2011CB706801)the National Natural Science Foundation of China(Grant No.51374137,51171089)the National Science and Technology Major Projects(Grant No.2012ZX04012-011,2011ZX04014-052)
文摘Due to the extensive application of Al-Si alloys in the automotive and aerospace industries as structural components, an understanding of their microstructural formation, such as dendrite and(Al+Si) eutectic, is of great importance to control the desirable microstructure, so as to modify the performance of castings. Since previous major themes of microstructural simulation are dendrite and regular eutectic growth, few efforts have been paid to simulate the irregular eutectic growth. Therefore, a multiphase cellular automaton(CA) model is developed and applied to simulate the time-dependent Al-Si irregular eutectic growth. Prior to model establishment, related experiments were carried out to investigate the influence of cooling rate and Sr modification on the growth of eutectic Si. This CA model incorporates several aspects, including growth algorithms and nucleation criterion, to achieve the competitive and cooperative growth mechanism for nonfaceted-faceted Al-Si irregular eutectic. The growth kinetics considers thermal undercooling, constitutional undercooling, and curvature undercooling, as well as the anisotropic characteristic of eutectic Si growth. The capturing rule takes into account the effects of modification on the silicon growth behaviors.The simulated results indicate that for unmodified alloy, the higher eutectic undercooling results in the higher eutectic growth velocity, and a more refined eutectic microstructure as well as narrower eutectic lamellar spacing. For modified alloy, the eutectic silicon tends to be obvious fibrous morphology and the morphology of eutectic Si is determined by both chemical modifier and cooling rate. The predicted microstructure of Al-7Si alloy under different solidification conditions shows that this proposed model can successfully reproduce both dendrite and eutectic microstructures.
基金supported by the National Natural Science Foundation of China (Grant No. 52175333)Tribology Science Fund of the State Key Laboratory of Tribology,Tsinghua University (Grant No. SKLT2021B05)+1 种基金Foshan Science and Technology Innovation Team Project (Grant No. 2018IT100142)National Science and Technology Major Project of China (Grant No. J2019-VII-0002-0142)
文摘Ceramic cores are widely used in investment casting,and ideal properties of cores are essential for high-quality castings.Under the circumstances requiring thick cores,solid cores are likely to encounter deformation and cracking defects due to the accumulation of shrinkage.Therefore,with the superiority of ceramic stereolithography in producing complex ceramic parts,hollow cores with lattice structures were designed and fabricated.The dimensional accuracy and properties of the green and sintered bodies were evaluated.Results show the dimensional accuracy of sintered cores is controlled within±0.25 mm benefited from the precise green bodies.The mechanical properties are not obviously deteriorated.The bending strength reaches 11.94 MPa at room temperature and 12.87 MPa at 1,500℃ with a creep deformation of 0.345 mm.Furthermore,casting verifications prove that the hollow cores meet the requirements of investment casting.Smooth casting surfaces are obtained,at the same time,the core-removal efficiency is improved by over 3 times.
基金the National Basic Research Program of China (Grant No. 2007CB613905)the National Natural Science Foundation of China (Grant Nos. 50671050 and 50431030)
文摘Pd80+xSi20-x (x=0,1,and 2) binary metallic glasses with the diameter ranging from 7 to 8 mm were prepared by a combination of fluxing and water quenching or air cooling. Thermal analysis results show that with increasing Si content,the glass transition temperature Tg,the initial crystallization temperature Tx and the onset crystalliza-tion temperature Tp of Pd-Si binary glassy alloys increase. Moreover,the super-cooled liquid region reaches 61 K. It indicates that Pd-Si binary alloys possess large glass forming ability,which can be greatly improved by fluxing treatment.