期刊文献+
共找到296篇文章
< 1 2 15 >
每页显示 20 50 100
Coupling Au with BO_(x) matrix induced by Closo-boron cluster for electrochemical synthesis of ammonia 被引量:1
1
作者 Wenjing Liu Nan Yang +10 位作者 Yuao Wei Yingjie Yu Jie Chen Mo Wei Yuting Huang Xiaohan Li Linghai Zhang Faisal Saleem Weina Zhang Haibo Zhang Fengwei Huo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期471-477,I0012,共8页
Au is considered as one of the most promising catalysts for nitrogen reduction reaction(NRR),however maximizing the activity utilization rate of Au and understanding the synergistic effects between Au and carriers pos... Au is considered as one of the most promising catalysts for nitrogen reduction reaction(NRR),however maximizing the activity utilization rate of Au and understanding the synergistic effects between Au and carriers pose ongoing challenges.Herein,we systematically explore the synergistic catalytic effect of incorporating Au with boron clusters for accelerating NRR kinetics.An in-situ abinitio strategy is employed to construct B-doped Au nanoparticles(2-6 nm in diameter)loaded on BO_(x) substrates(AuBO_(x)),in which B not only modulates the surface electronic structure of Au but also forms strong coupling interactions to stabilize the nanoparticles.The electrochemical results show that Au-BO_(x) possesses excellent NRR activity(NH_(3) yield of 48.52μg h^(-1)mg_(cat)^(-1),Faraday efficiency of 56.18%),and exhibits high stability and reproducibility throughout the electrocatalytic NRR process.Theoretical calculations reveal that the introduction of B induces the formation of both Au dangling bond and Au-B coupling bond.which considerably facilitates the hydrogenation of~*N_(2)^(-)~*NH_(3).The present work provides a new avenue for the preparation of metal-boron materials achieved by one-step reduction and doping process,utilizing boron clusters as reducing and stabilizing agents. 展开更多
关键词 Boron clusters Nitrogen reduction reaction Au–B coupling
在线阅读 下载PDF
Improved Efficiency and Stability of Organic Solar Cells by Interface Modification Using Atomic Layer Deposition of Ultrathin Aluminum Oxide
2
作者 Ai Lan Yiqun Li +8 位作者 Huiwen Zhu Jintao Zhu Hong Lu Hainam Do Yifan Lv Yonghua Chen Zhikuan Chen Fei Chen Wei Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期282-290,共9页
The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)... The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)fabricated ultrathin Al_(2)O_(3)layers are applied to modify the ETLs/active blends(PM6:BTP-BO-4F)interfaces of OSCs,thus improving device performance.The ALD-Al_(2)O_(3)thin layers on ZnO significantly improved its surface morphology,which led to the decreased work function of ZnO and reduced recombination losses in devices.The simultaneous increase in open-circuit voltage(V_(OC)),short-circuit current density(J_(SC))and fill factor(FF)were achieved for the OSCs incorporated with ALD-Al_(2)O_(3)interlayers of a certain thickness,which produced a maximum PCE of 16.61%.Moreover,the ALD-Al_(2)O_(3)interlayers had significantly enhanced device stability by suppressing degradation of the photoactive layers induced by the photocatalytic activity of ZnO and passivating surface defects of ZnO that may play the role of active sites for the adsorption of oxygen and moisture. 展开更多
关键词 atomic layer deposition interface modification organic solar cells STABILITY
在线阅读 下载PDF
Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm
3
作者 Jianye Li Hao Wang +8 位作者 Yibing Luo Zijing Zhou He Zhang Huizhi Chen Kai Tao Chuan Liu Lingxing Zeng Fengwei Huo Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期1-22,共22页
Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low ... Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low rescue efficiency.The multimodal electronic skin(e-skin)proposed not only reproduces the pressure,temperature,and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas.Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin.Rescue robots integrated with multimodal e-skin and artificial intelligence(AI)algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping,laying the foundation for automated post-earthquake rescue.Besides,the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time,thereby adopting appropriate measures to protect trapped people from the toxic environment.Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities,which,as an interface for interaction with the physical world,dramatically expands intelligent robots’application scenarios. 展开更多
关键词 Stretchable hydrogel sensors Multimodal e-skin Artificial intelligence Post-earthquake rescue Wireless toxic gas alarm
在线阅读 下载PDF
Overcoming the biofilm barrier by cell-like microbubbles for the treatment of biofilm-associated implant infections
4
作者 Yan-Ling Hu Jin-Gai Jiang +4 位作者 Hui-Juan Cheng Wei Shi Yan-Ni Song Min Zhang Dong-Liang Yang 《Biomedical Engineering Communications》 2024年第2期1-3,共3页
Although the advent of antibiotics has significantly improved the quality of life of infected patients,bacterial infections continue to pose a serious threat to public health[1,2].According to a recent report,within t... Although the advent of antibiotics has significantly improved the quality of life of infected patients,bacterial infections continue to pose a serious threat to public health[1,2].According to a recent report,within the next 30 years,bacterial infections are projected to surpass cancer in terms of lethality rates,resulting in an alarming 10 million deaths annually by 2050 due to the development of bacterial resistance[3].Moreover,the formation of bacterial biofilms hampers the penetration of antibacterial agents and inhibits the host immune response,making biofilm infections extremely challenging to treat[4-7].Hence,the development of innovative antimicrobial biofilm therapeutics is imperative. 展开更多
关键词 INFECTIONS annually TREATMENT
在线阅读 下载PDF
Review of micromachined optical accelerometers:from mg to sub-μg 被引量:15
5
作者 Qianbo Lu Yinan Wang +3 位作者 Xiaoxu Wang Yuan Yao Xuewen Wang Wei Huang 《Opto-Electronic Advances》 SCIE 2021年第3期1-24,共24页
Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume... Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume and anti-electromagnetic disturbance measurement of acceleration.In recent years,with the in-depth research and development of MOEMS accelerometers,the community is flourishing with the possible applications in seismic monitoring,inertial navigation,aerospace and other industrial and military fields.There have been a variety of schemes of MOEMS accelerometers,whereas the performances differ greatly due to different measurement principles and corresponding application requirements.This paper aims to address the pressing issue of the current lack of systematic review of MOEMS accelerometers.According to the optical measurement principle,we divide the MOEMS accelerometers into three categories:the geometric optics based,the wave optics based,and the new optomechanical accelerometers.Regarding the most widely studied category,the wave optics based accelerometers are further divided into four sub-categories,which is based on grating interferometric cavity,Fiber Bragg Grating(FBG),Fabry-Perot cavity,and photonic crystal,respectively.Following a brief introduction to the measurement principles,the typical performances,advantages and disadvantages as well as the potential application scenarios of all kinds of MOEMS accelerometers are discussed on the basis of typical demonstrations.This paper also presents the status and development tendency of MOEMS accelerometers to meet the ever-increasing demand for high-precision acceleration measurement. 展开更多
关键词 ACCELEROMETER Micro-Opto-Electro-Mechanical Systems(MOEMS) integrated optics accelerometer review
在线阅读 下载PDF
High-performance flexible perovskite photodetectors based on single-crystal-like two-dimensional Ruddlesden-Popper thin films 被引量:6
6
作者 Chao Liang Hao Gu +5 位作者 Junmin Xia Tanghao Liu Shiliang Mei Nan Zhang Yonghua Chen Guichuan Xing 《Carbon Energy》 SCIE CSCD 2023年第2期250-259,共10页
Two-dimensional Ruddlesden-Popper(2DRP)perovskites have attracted intense research interest for optoelectronic applications,due to their tunable optoelectronic properties and better environmental stability than their ... Two-dimensional Ruddlesden-Popper(2DRP)perovskites have attracted intense research interest for optoelectronic applications,due to their tunable optoelectronic properties and better environmental stability than their threedimensional counterparts.Furthermore,high-performance photodetectors based on single-crystal and polycrystalline thin-films 2DRP perovskites have shown great potential for practical application.However,the complex growth process of single-crystal membranes and uncontrollable phase distribution of polycrystalline films hinder the further development of 2DRP perovskites photodetectors.Herein,we report a series of high-performance photodetectors based on single-crystal-like phase-pure 2DRP perovskite films by designing a novel spacer source.Experimental and theoretical evidence demonstrates that phase-pure films substantially suppress defect states and ion migration.These highly sensitive photodetectors show I_(light)/I_(dark) ratio exceeding 3×10^(4),responsivities exceeding 16 A/W,and detectivities exceeding 3×10^(13) Jones,which are higher at least by 1 order than those of traditional mixed-phase thinfilms 2DRP devices(close to the reported single-crystal devices).More importantly,this strategy can significantly enhance the operational stability of optoelectronic devices and pave the way to large-area flexible productions. 展开更多
关键词 FLEXIBILITY PHOTODETECTORS single-crystal-like stability two-dimensional perovskites
在线阅读 下载PDF
Catalysis-based specific detection and inhibition of tyrosinase and their application 被引量:3
7
作者 Yunwei Qu Qing Zhan +7 位作者 Shubo Du Yang Ding Bin Fang Wei Du Qiong Wu Haidong Yu Lin Li Wei Huang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2020年第5期414-425,共12页
Tyrosinase is an important enzyme in controlling the formation of melanin in melanosome,and plays a key role in the pigmentation of hair and skin.The abnormal expression or activation of tyrosinase is associated with ... Tyrosinase is an important enzyme in controlling the formation of melanin in melanosome,and plays a key role in the pigmentation of hair and skin.The abnormal expression or activation of tyrosinase is associated with several diseases such as albinism,vitiligo,melanoma and Parkinson disease.Excessive deposition of melanin could cause diseases such as freckles and brown spots in the human body,and it is also closely related to browning of fruits and vegetables and insect molting.Detecting and inhibiting the activity of tyrosinase is of extraordinary value in the progress of diagnosis and treatment of these diseases.Therefore,many selective optical detection probes and small molecular inhibitors have been developed,and have made significant contributions to the basic and clinical research on these diseases.In this paper,the detection and inhibition of tyrosinase and their application in whitening products are reviewed,with special emphasis on development of fluorescent probes and inhibitors.Hopefully,this review will help design more efficient and sensitive tyrosinase probes and inhibitors,as well as shed light on novel treatment of diseases such as melanoma. 展开更多
关键词 TYROSINASE MELANIN Detection probe INHIBITORS MELANOMA
在线阅读 下载PDF
Stability of mixed-halide wide bandgap perovskite solar cells: Strategies and progress 被引量:3
8
作者 Lei Tao Jian Qiu +10 位作者 Bo Sun Xiaojuan Wang Xueqin Ran Lin Song Wei Shi Qi Zhong Ping Li Hui Zhang Yingdong Xia Peter Müller-Buschbaum Yonghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期395-415,I0011,共22页
Benefiting from the superior optoelectronic properties and low-cost manufacturing techniques,mixedhalide wide bandgap(WBG)perovskite solar cells(PSCs)are currently considered as ideal top cells for fabricating multi-j... Benefiting from the superior optoelectronic properties and low-cost manufacturing techniques,mixedhalide wide bandgap(WBG)perovskite solar cells(PSCs)are currently considered as ideal top cells for fabricating multi-junction or tandem solar cells,which are designed to beyond the Shockley-Queisser(S-Q)limit of single-junction solar cells.However,the poor long-term operational stability of WBG PSCs limits their further employment and hinders the marketization of multi-junction or tandem solar cells.In this review,recent progresses on improving environmental stability of mixed-halide WBG PSCs through different strategies,including compositional engineering,additive engineering,interface engineering,and other strategies,are summarized.Then,the outlook and potential direction are discussed and explored to promote the further development of WBG PSCs and their applications in multijunction or tandem solar cells. 展开更多
关键词 Mixed halide perovskite STABILITY Tandem solar cells Wide bandgap perovskite
在线阅读 下载PDF
The opportunities and challenges of ionic liquids in perovskite solar cells 被引量:2
9
作者 Jian Yang Jianfei Hu +3 位作者 Wenhao Zhang Hongwei Han Yonghua Chen Yue Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期157-171,I0005,共16页
Metal halide perovskite solar cells(PSCs)have shown great potential to become the next generation of photovoltaic devices due to their simple fabrication techniques,low cost,and soaring power conversion efficiency(PCE... Metal halide perovskite solar cells(PSCs)have shown great potential to become the next generation of photovoltaic devices due to their simple fabrication techniques,low cost,and soaring power conversion efficiency(PCE).However,mismatched with the quickly updated PCEs,the improvement of device stability is challenging and still remains a critical hurdle in the path to commercialization.Recently,ionic liquids(ILs)have been found to play multiple roles in obtaining efficient and stable PSCs.These ILs usually consist of large organic cations and organic or inorganic anions,which have weak electrostatic attraction and are generally liquid at around 100℃.ILs are almost non-volatile,non-flammable,with high ionic conductivity and excellent thermal and electrochemical stability.The roles of ILs in PSCs vary with their composition,that is,the types of anions and cations.In this review,we summarize the roles of anions and cations in terms of precursor solutions,additives,perovskite/charge transport layer interface engineering,and charge transport layers.This article aims to set up a structure–property-stability-performance correlations conferred by the IL in PSC and provide assistance for the anion and cation selection for improving the quality of perovskite film,optimizing interface contact,reducing defect states,and improving charge extraction and transport characteristics.Finally,the application of IL in PSCs is discussed and prospected. 展开更多
关键词 Perovskite solar cells Ionic liquid Anions and cations Additive Interface engineering
在线阅读 下载PDF
Recent advances and prospects of asymmetric non-fullerene small molecule acceptors for polymer solar cells 被引量:2
10
作者 Liu Ye Weiyu Ye Shiming Zhang 《Journal of Semiconductors》 EI CAS CSCD 2021年第10期128-147,共20页
Recently,polymer solar cells developed very fast due to the application of non-fullerence acceptors.Substituting asymmetric small molecules for symmetric small molecule acceptors in the photoactive layer is a strategy... Recently,polymer solar cells developed very fast due to the application of non-fullerence acceptors.Substituting asymmetric small molecules for symmetric small molecule acceptors in the photoactive layer is a strategy to improve the performance of polymer solar cells.The asymmetric design of the molecule is very beneficial for exciton dissociation and charge transport and will also fine-tune the molecular energy level to adjust the open-circuit voltage(Voc)further.The influence on the absorption range and absorption intensity will cause the short-circuit current density(Jsc)to change,resulting in higher device performance.The effect on molecular aggregation and molecular stacking of asymmetric structures can directly change the microscopic morphology,phase separation size,and the active layer's crystallinity.Very recently,thanks to the ingenious design of active layer materials and the optimization of devices,asymmetric non-fullerene polymer solar cells(A-NF-PSCs)have achieved remarkable development.In this review,we have summarized the latest developments in asymmetric small molecule acceptors(A-NF-SMAs)with the acceptor-donor-acceptor(A-D-A)and/or acceptor-donor-acceptor-donor-acceptor(A-D-A-D-A)structures,and the advantages of asymmetric small molecules are explored from the aspects of charge transport,molecular energy level and active layer accumulation morphology. 展开更多
关键词 polymer solar cells non-fullerene acceptors small asymmetric molecules
在线阅读 下载PDF
Crystallographic and magnetic properties of van der Waals layered FePS_3 crystal 被引量:1
11
作者 Qi-Yun Xie Min Wu +4 位作者 Li-Min Chen Gang Bai Wen-Qin Zou Wei Wang Liang He 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第5期202-205,共4页
The crystallographic and magnetic properties are presented for van der Waals antiferromagnetic FePS_3. High-quality single crystals of millimeter size have been successfully synthesized through the chemical vapor tran... The crystallographic and magnetic properties are presented for van der Waals antiferromagnetic FePS_3. High-quality single crystals of millimeter size have been successfully synthesized through the chemical vapor transport method. The layered structure and cleavability of the compound are apparent, which are beneficial for a potential exploration of the interesting low dimensional magnetism, as well as for incorporation of FePS_3 into van der Waals heterostructures. For the sake of completeness, we have measured both direct current(dc) and alternating current(ac) magnetic susceptibility.The paramagnetic to antiferromagnetic transition occurs at approximately T_N 115 K. The effective moment is larger than the spin-only effective moment, suggesting that an orbital contribution to the total angular momentum of the Fe^(2+) could be present. The ac susceptibility is independent of frequency, which means that the spin freezing effect is excluded.Strong anisotropy of out-of-plane and in-plane susceptibility has been shown, demonstrating the Ising-type magnetic order in FePS_3 system. 展开更多
关键词 FePS3 VAN der WAALS CRYSTALS single CRYSTAL ANTIFERROMAGNETISM
在线阅读 下载PDF
Stability of Sn-Pb mixed organic–inorganic halide perovskite solar cells:Progress,challenges,and perspectives 被引量:1
12
作者 Shaoshen Lv Weiyin Gao +9 位作者 Yanghua Liu He Dong Nan Sun Tingting Niu Yingdong Xia Zhongbin Wu Lin Song Chenxin Ran Li Fu Yonghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期371-404,共34页
The exploration of low bandgap perovskite material to approach Shockley-Queisser limit of photovoltaic device is of great significance,but it is still challenging.During the past few years,tin–lead(Sn-Pb)mixed perovs... The exploration of low bandgap perovskite material to approach Shockley-Queisser limit of photovoltaic device is of great significance,but it is still challenging.During the past few years,tin–lead(Sn-Pb)mixed perovskites with low bandgaps have been rapidly developed,and their single junction solar cells have reached power conversion efficiency(PCE)over 21%,which also makes them ideal candidate as low bandgap sub-cell for tandem device.Nevertheless,due to the incorporation of unstable Sn^(2+),the stability issue becomes the vital problem for the further development of Sn-Pb mixed perovskite solar cells(PSCs).In this review,we are dedicated to give a full view in current understanding on the stability issue of SnPb mixed perovskites and their PSCs.We begin with the demonstration on the origin of instability of Sn-Pb mixed perovskites,including oxidation of Sn^(2+),defects,and interfacial layer induced instability.Sequentially,the up-to-date developments on the stability improvement of Sn-Pb mixed perovskites and their PSCs is systematically reviewed,including composition engineering,additive engineering,and interfacial engineering.At last,the current challenges and future perspectives on the stability study of Sn-Pb mixed PSCs are discussed,which we hope could promote the further application of Sn-Pb mixed perovskites towards commercialization. 展开更多
关键词 Sn-Pb mixed perovskites STABILITY Interfacial defects Energy level mismatch Solar cells
在线阅读 下载PDF
Tuning crystal orientation and charge transport of quasi-2D perovskites via halogen-substituted benzylammonium for efficient solar cells 被引量:1
13
作者 Guiqiang Cheng Jian Wang +6 位作者 Rong Yang Cheng Li Hao Zhang Nana Wang Renzhi Li Jianpu Wang Wei Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期205-209,I0007,共6页
Quasi-two-dimensional(quasi-2D)perovskites with high stability usually suffers from poor device efficiency.Chemical tuning of the spacer cations has been an effective strategy to achieve efficient and stable quasi-2D ... Quasi-two-dimensional(quasi-2D)perovskites with high stability usually suffers from poor device efficiency.Chemical tuning of the spacer cations has been an effective strategy to achieve efficient and stable quasi-2D perovskite solar cells.Here,we demonstrate that 3-halogon-substituted benzylammonium iodide(3X-BAI,X=F,Cl,Br,I)can significantly affect the orientation of low-dimensional perovskites and charge transport from perovskite to hole extraction layer,as well as device performance.With 3Br-BAI,we achieve the highest device efficiency of 13.21%for quasi-2D perovskites with a nominal n=3 average composition.Our work provides a facile approach to regulate vertical crystal orientation and charge transport via tuning the molecular structure of organic spacer toward high performance quasi-2D perovskite solar cells. 展开更多
关键词 Perovskites Solar cells Quasi-two dimensional ORIENTATION Charge transport
在线阅读 下载PDF
Triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide nanowires enable high-loading and long-lasting liquid Li_(2)S_(6)-based lithium-sulfur batteries 被引量:1
14
作者 Chenyang Zha Donghai Wu +1 位作者 Xiuquan Gu Houyang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期599-607,I0013,共10页
High performance of lithium-sulfur batteries have been dragged down by their shuttling behavior which is complicated multiphase transition-based 16-electron redox reactions of the S8/Li2 S.In this article,the triple-p... High performance of lithium-sulfur batteries have been dragged down by their shuttling behavior which is complicated multiphase transition-based 16-electron redox reactions of the S8/Li2 S.In this article,the triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide(C-Sb_(2)S_(3))nanowires are tailored to design a multifunctional polysulfide host which can inhibit migration of polysulfides and accelerate conversion kinetics of redox electrochemical reactions.Benefiting from the triple-interface design of polysulfides/Sb_(2)S_(3)/carbon clusters,the C-Sb_(2)S_(3) electrode not only anchors polysulfide migration by the synergistic effect of Sb,S,and C atoms as interfacial active sites,but also the graphene-like carbon clusters shorten the diffusion paths to further favor redox electron/ion transport through the liquid(electrolyte/polysulfide)and solid(Li2 S/S8,carbon clusters,and Sb_(2)S_(3))-based triple-phases.Therefore,these Li_(2)S_(6)-based C-Sb_(2)S_(3) cells possess high sulfur loading,excellent cycling stability,impressive specific capacity,and great rate capability.This work of interfacial engineering reveals insight for powering reaction kinetics in the complicated multistep catalysis reaction with multiphase evolution-based chargetransfer/non-transfer processes. 展开更多
关键词 Triple-phase interfaces Graphene-like carbon Antimony trisulfide High preformance Lithium-sulfur batteries
在线阅读 下载PDF
Computational Insights into Charge Storage Mechanisms of Supercapacitors 被引量:2
15
作者 Kui Xu Hui Shao +4 位作者 Zifeng Lin Céline Merlet Guang Feng Jixin Zhu Patrice Simon 《Energy & Environmental Materials》 2020年第3期235-246,共12页
Computational modeling methods,including molecular dynamics(MD)and Monte Carlo(MC)simulations,and density functional theory(DFT),are receiving booming interests for exploring charge storage mechanisms of electrochemic... Computational modeling methods,including molecular dynamics(MD)and Monte Carlo(MC)simulations,and density functional theory(DFT),are receiving booming interests for exploring charge storage mechanisms of electrochemical energy storage devices.These methods can effectively be used to obtain molecular scale local information or provide clear explanations for novel experimental findings that cannot be directly interpreted through experimental investigations.This short review is dedicated to emphasizing recent advances in computational simulation methods for exploring the charge storage mechanisms in typical nanoscale materials,such as nanoporous carbon materials,2 D MXene materials,and metal-organic framework electrodes.Beyond a better understanding of charge storage mechanisms and experimental observations,fast and accurate enough models would be helpful to provide theoretical guidance and experimental basis for the design of new high-performance electrochemical energy storage devices. 展开更多
关键词 2D material charge storage mechanism molecular simulations porous electrode SUPERCAPACITOR
在线阅读 下载PDF
The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm–1000 nm
16
作者 郝敬昱 徐颖 +4 位作者 张玉佩 陈淑芬 李兴鳌 汪联辉 黄维 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期283-289,共7页
Au nanoparticles (NPs) mixed with a majority of bone-like, rod, and cube shapes and a minority of irregu- lar spheres, which can generate a wide absorption spectrum of 400 nm-1000 nm and three localized surface plas... Au nanoparticles (NPs) mixed with a majority of bone-like, rod, and cube shapes and a minority of irregu- lar spheres, which can generate a wide absorption spectrum of 400 nm-1000 nm and three localized surface plas- mon resonance peaks, respectively, at 525, 575, and 775 nrn, are introduced into the hole extraction layer poly(3,4- ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) to improve optical-to-electrical conversion performances in polymer photovoltaic ceils. With the doping concentration of Au NPs optimized, the cell performance is significantly improved: the short-circuit current density and power conversion efficiency of the poly(3-hexylthiophene): [6,6]-phenyl- C60-butyric acid methyl ester cell are increased by 20.54% and 21.2%, reaching 11.15 mA.cm-2 and 4.23%. The variations of optical, electrical, and morphology with the incorporation of Au NPs in the cells are analyzed in detail, and our results demonstrate that the cell performance improvement can be attributed to a synergistic reaction, including: 1) both the local- ized surface plasmon resonanceand scattering-induced absorption enhancement of the active layer, 2) Au doping-induced hole transport/extraction ability enhancement, and 3) large interface roughness-induced efficient exciton dissociation and hole collection. 展开更多
关键词 Au nanoparticle polymer solar cells localized surface plasmon resonance SCATTERING hole transport
在线阅读 下载PDF
Inverse design and realization of an optical cavity-based displacement transducer with arbitrary responses
17
作者 Qianbo Lu Qingxiong Xiao +6 位作者 Chengxiu Liu Yinan Wang Qixuan Zhu Manzhang Xu Xuewen Wang Xiaoxu Wang Wei Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第3期12-24,共13页
Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis.A number of theories and methods have been successful in describing the optical response of a s... Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis.A number of theories and methods have been successful in describing the optical response of a stratified optical cavity,while the inverse problem,especially the inverse design of a displacement sensitive cavity,remains a significant challenge due to the cost of computation and comprehensive performance requirements.This paper reports a novel inverse design methodology combining the characteristic matrix method,mixed-discrete variables optimization algorithm,and Monte Carlo method-based tolerance analysis.The material characteristics are indexed to enable the mixed-discrete variables optimization,which yields considerable speed and efficiency improvements.This method allows arbitrary response adjustment with technical feasibility and gives a glimpse into the analytical characterization of the optical response.Two entirely different light-displacement responses,including an asymmetric sawtooth-like response and a highly symmetric response,are dug out and experimentally achieved,which fully confirms the validity of the method.The compact Fabry-Perot cavities have a good balance between performance and feasibility,making them promising candidates for displacement transducers.More importantly,the proposed inverse design paves the way for a universal design of optical cavities,or even nanophotonic devices. 展开更多
关键词 inverse design optical cavity displacement transducer mixed-discrete variables optimization stratified system
在线阅读 下载PDF
Controllable assembling of highly-doped linked carbon bubbles on graphene microfolds
18
作者 Tieqi Huang Chen Chen +6 位作者 Yunfeng Hu Kang Hu Wenqing Wang Kun Rui Huijuan Lin Ruizi Li Jixin Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期500-507,共8页
Carbon-based microassemblies(CMs) have attracted significant attention in numerous applications due to their unique hierarchical structures and delicate building blocks,especially when hollow carbon spheres(HCSs) are ... Carbon-based microassemblies(CMs) have attracted significant attention in numerous applications due to their unique hierarchical structures and delicate building blocks,especially when hollow carbon spheres(HCSs) are reasonably introduced into the construction.Herein,a new design for novel HCSscombined CMs is proposed.Remarkably,the HCSs are linear carbon bubbles linked one-by-one, arranging into necklaces decorating on the graphene microfolds.Detailed thermal analysis confirm that high temperatures straighten the linked carbon bubbles into bamboo-like carbon nanofibers,evidently due to the attenuation of doping degree.Benefiting from the abundant active sites of carbon bubbles,the obtained CMs exhibit satisfactory electrocatalytic activity for oxygen reduction reactions.This work establishes a bridge to precisely control the synthesis of carbon-based hierarchical architectures. 展开更多
关键词 Hollow carbon spheres Microassemblies SPRAY-DRYING Carbon nanofibers Oxygen reduction reaction
在线阅读 下载PDF
Towards Solar-Driven Formation of Robust and Self-Healable Waterborne Polyurethane Containing Disulfide Bonds via in-situ Incorporation of 2D Titanium Carbide MXene
19
作者 Sai Gong Shanglin Xiang +1 位作者 Tingwei Wang Dongyu Cai 《Journal of Renewable Materials》 SCIE EI 2023年第3期1063-1076,共14页
Waterborne polymers are vital for coating industry to reduce carbon emissions.However,formation of robust and self-healable films at ambient temperature remains a challenge owing to high energy cost of film formation ... Waterborne polymers are vital for coating industry to reduce carbon emissions.However,formation of robust and self-healable films at ambient temperature remains a challenge owing to high energy cost of film formation process.This work reports a solar-driven film formation of waterborne polyurethanes(WPUs)containing disulfide bonds via in-situ incorporation of 2D titanium carbide(MXene)with ability to convert light to heat.Instead of directly mixed with WPUs,MXene is added to join the reaction with isocyanate-terminated pre-polymer before emulsification process.This approach not only prevents aggregation of MXene in water but stabilizes MXene against thermal degradation which is the key hurdle for mass production of MXene/WPU composites.More importantly,our results show that mechanical performance of WPU films under visible light(100 mW/cm^(2))is overwhelmingly competitive with that processed in oven.Furthermore,the existence of disulfide bonds in PU chains enables fast self-healing of micro-cracks under natural visible light which could vanish completely within 40 min.The fractured specimens were repaired under natural visible light for 2 h,and the self-healing efficiency of tensile strength and elongation at break reached over 94.00%. 展开更多
关键词 MXene waterborne polymer photothermal conversion film formation
在线阅读 下载PDF
Accurate quantification of TiO_(2)(B)'s phase purity via Raman spectroscopy
20
作者 Jiamiao Ran Hui Liu +8 位作者 Hongliang Dong Peng Gao Haowei Cheng Jianing Xu Hailun Wang Zixing Wang Qingfeng Fu Jiaxu Yan Jilei Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1371-1379,共9页
Bronze phase titanium dioxide(TiO_(2)(B))could be a promising high-power anode for lithium ion battery.However,TiO_(2)(B)is a metastable material,so the as-synthesized samples are inevitably accompanied by the existen... Bronze phase titanium dioxide(TiO_(2)(B))could be a promising high-power anode for lithium ion battery.However,TiO_(2)(B)is a metastable material,so the as-synthesized samples are inevitably accompanied by the existence of anatase phases.It has been found that the TiO_(2)(B)'s purity is positively correlated with its electrochemical performance.Herein,we have established an accurate quantification of the TiO_(2)(B)/anatase ratio,by figuring out the function between the purity of TiO_(2)(B)phase in the high purity range and its Raman spectra features in combination of the calibration by the synchrotron radiation X-ray diffraction(XRD).Compared with the time-consuming electrochemical method,the rapid,sensitive and non-destructive features of Raman spectroscopy have made it a promising candidate for determining the purity of TiO_(2)(B).Further,the correlations developed in this work should be instructive in synthesizing pure TiO_(2)(B)and furthermore optimizing its electrochemical charge storage properties. 展开更多
关键词 TiO_(2)(B) Phase purity Raman spectroscopy Synchrotron XRD Charge storage properties
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部