期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Pairing correlation of the kagome-lattice Hubbard model with the nearest-neighbor interaction
1
作者 Chen Yang Chao Chen +2 位作者 Runyu Ma Ying Liang Tianxing Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期41-45,共5页
A recently discovered family of kagome lattice materials,AV_(3)Sb_(5)(A=K,Rb,Cs),has attracted great interest,especiallyin the debate over their dominant superconducting pairing symmetry.To explore this issue,we study... A recently discovered family of kagome lattice materials,AV_(3)Sb_(5)(A=K,Rb,Cs),has attracted great interest,especiallyin the debate over their dominant superconducting pairing symmetry.To explore this issue,we study the superconductingpairing behavior within the kagome-lattice Hubbard model through the constrained path Monte Carlo method.It isfound that doping around the Dirac point generates a dominant next-nearest-neighbor-d pairing symmetry driven by on-siteCoulomb interaction U.However,when considering the nearest-neighbor interaction V,it may induce nearest-neighbor-ppairing to become the preferred pairing symmetry.Our results provide useful information to identify the dominant superconductingpairing symmetry in the AV_(3)Sb_(5)family. 展开更多
关键词 kagome-lattice Hubbard model SUPERCONDUCTIVITY pairing symmetry CPMC
在线阅读 下载PDF
Prediction of novel layered indium halide superconductors
2
作者 Zhi-Hong Yuan Jing-Jing Meng +2 位作者 Rui Liu Peng-Yu Zheng Zhi-Ping Yin 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期388-393,共6页
We design two new layered indium halide compounds LaOInF_(2)and LaOInCl_(2)by means of first-principles calculations and evolutionary crystal structure prediction.We find both compounds crystallize in a tetragonal str... We design two new layered indium halide compounds LaOInF_(2)and LaOInCl_(2)by means of first-principles calculations and evolutionary crystal structure prediction.We find both compounds crystallize in a tetragonal structure with P4/nmm space group and have indirect band gaps of 2.58 eV and 3.21 eV,respectively.By substituting O with F,both of them become metallic and superconducting at low temperature.The F-doping leads to strong electron-phonon coupling in the low-energy acoustic phonon modes which is mainly responsible for the induced superconductivity.The total electron-phonon coupling strength are 1.86 and 1.48,while the superconducting transition temperature(T_(c))are about 7.2 K and 6.5 K with 10%and 5%F doping for LaOInF_(2)and LaOInCl_(2),respectively. 展开更多
关键词 SUPERCONDUCTOR LaOInF_(2) LaOInCl_(2) electron-phonon coupling
在线阅读 下载PDF
Carrier-Density-Determined Magnetoresistance in Semimetal SrIrO_(3)
3
作者 Liang Yang Biao Wu +4 位作者 Xin Liu Mingyu Wang Congli He Shouguo Wang Jinxing Zhang 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第10期90-96,共7页
SrIrO_(3),a Dirac material with a strong spin-orbit coupling(SOC),is a platform for studying topological properties in strongly correlated systems,where its band structure can be modulated by multiple factors,such as ... SrIrO_(3),a Dirac material with a strong spin-orbit coupling(SOC),is a platform for studying topological properties in strongly correlated systems,where its band structure can be modulated by multiple factors,such as crystal symmetry,elements doping,oxygen vacancies,magnetic field,and temperature.Here,we find that the engineered carrier density plays a critical role on the magnetoelectric transport properties of the topological semimetal SrIrO_(3).The decrease of carrier density subdues the weak localization and the associated negative magnetoresistance,while enhancing the SOC-induced weak anti-localization.Notably,the sample with the lowest carrier density exhibits high-field positive magnetoresistance,suggesting the presence of a Dirac cone.In addition,the anisotropic magnetoresistance indicates the anisotropy of the electronic structure near the Fermi level.The engineering of carrier density provides a general strategy to control the Fermi surface and electronic structure in topological materials. 展开更多
关键词 TEMPERATURE materials TOPOLOGICAL
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部