This article addresses the past,present,and future status of hybrid plasmonic waveguides(HPWs).It presents a comprehensive review of HPW-based photonic integrated circuits(PICs),covering both passive and active device...This article addresses the past,present,and future status of hybrid plasmonic waveguides(HPWs).It presents a comprehensive review of HPW-based photonic integrated circuits(PICs),covering both passive and active devices,as well as potential application of on-chip HPWbased devices.HPW-based integrated circuits(HPWICs)are compatible with complementary metal oxide semiconductor technology,and their matched refractive indices enables the adaptation of existing fabrication processes for silicon-on-insulator designs.HPWs combine plasmonic and photonic waveguide components to provide strong confinement with longer propagation length L_(p)of HP modes with nominal losses.These HPWs are able to make a trade-off between low loss and longer L_(p),which is not possible with independent plasmonic and photonic waveguide components owing to their inability to simultaneously achieve low propagation loss with rapid and effective all-optical functionality.With HPWs,it is possible to overcome challenges such as high Ohmic losses and enhance the functional performance of PICs through the use of multiple discrete components.HPWs have been employed not only to guide transverse magnetic modes but also for optical beam manipulation,wireless optical communication,filtering,computation,sensing of bending,optical signal emission,and splitting.They also have the potential to play a pivotal role in optical communication systems for quantum computing and within data centers.At present,HPW-based PICs are poised to transform wireless chip-to-chip communication,a number of areas of biomedical science,machine learning,and artificial intelligence,as well as enabling the creation of densely integrated circuits and highly compact photonic devices.展开更多
Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologie...Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologies ever developed,which has profoundly reshaped the modern life with a wide range of applications.In recent decades,semiconductor technology has rapidly evolved from first-generation narrow bandgap materials(Si,Ge)to the latest fourth-generation ultra-wide bandgap semiconductor(GaO,diamond,AlN)with enhanced performance to meet growing demands.Additionally,merging semiconductor devices with other techniques,such as computer assisted design,state-of-the-art micro/nano fabrications,novel epitaxial growth,have significantly accelerated the development of semiconductor optoelectronics devices.Among them,integrating metasurfaces with semiconductor optoelectronic devices have opened new frontiers for on-chip control of their electromagnetic response,providing access to previously inaccessible degrees of freedom.We review the recent advances in on-chip control of a variety of semiconductor optoelectronic devices using integrated metasurfaces,including semiconductor lasers,semiconductor light emitting devices,semiconductor photodetectors,and low dimensional semiconductors.The integration of metasurfaces with semiconductors offers wafer-level ultracompact solutions for manipulating the functionalities of semiconductor devices,while also providing a practical platform for implementing cuttingedge metasurface technology in real-world applications.展开更多
The finding of the robust ferroelectricity in HfO_(2)-based thin films is fantastic from the view point of both the fundamentals and the applications.In this review article,the current research status of the future pr...The finding of the robust ferroelectricity in HfO_(2)-based thin films is fantastic from the view point of both the fundamentals and the applications.In this review article,the current research status of the future prospects for the ferroelectric HfO_(2)-based thin films and devices are presented from fundamentals to applications.The related issues are discussed,which include:1)The ferroelectric characteristics observed in HfO_(2)-based films and devices associated with the factors of dopant,strain,interface,thickness,defect,fabrication condition,and more;2)physical understanding on the observed ferroelectric behaviors by the density functional theory(DFT)-based theory calculations;3)the characterizations of microscopic and macroscopic features by transmission electron microscopes-based and electrical properties-based techniques;4)modeling and simulations,5)the performance optimizations,and 6)the applications of some ferroelectric-based devices such as ferroelectric random access memory,ferroelectric-based field effect transistors,and the ferroelectric tunnel junction for the novel information processing systems.展开更多
Interference filter-stabilized external cavity diode lasers (ECDLs) have properties of simple configurations, high sta- bilities, and narrow linewidths. However, the interference filter used in common ECDL designs r...Interference filter-stabilized external cavity diode lasers (ECDLs) have properties of simple configurations, high sta- bilities, and narrow linewidths. However, the interference filter used in common ECDL designs requires an ultra-narrow bandwidth (about 0.3 nm) to achieve mode selection, that is considerably expensive and not yet available for a wide range of wavelengths. In this paper, a robust ECDL using an available broad bandwidth (about 4 nm) interference filter as the wavelength discriminator is constructed and tested. The ECDL demonstrated a narrow Lorentzian fitted linewidth of 95 kHz and a spectral purity of 2.9 MHz. The long-term frequency stability of the ECDL reaches 5.59 x 10 12.展开更多
A minitype reference radiation(MRR) with dimensions of only 1 m × 1 m × 1 m has been developed for the in situ calibration of photon dosimeters.The present work conducts a feasibility study on determining th...A minitype reference radiation(MRR) with dimensions of only 1 m × 1 m × 1 m has been developed for the in situ calibration of photon dosimeters.The present work conducts a feasibility study on determining the conventional true value of gamma-ray air kerma at the point of test in the MRR.Owing to its smaller dimensions,the scattered gamma-rays in the MRR are expected to induce a non-negligible interference with the radiation field compared with conditions in the standard reference radiation stipulated by ISO4037-1 or GB/T12162.1.A gamma-ray spectrometer was employed to obtain the spectra of scattered gamma-rays within the MRR,and the feature components of the spectra were extracted by principal component analysis to characterize the interference of a dosimeter probe in the radiation field.A prediction model of the CAK at the point of test was built by least squares support vector machine based on the feature component data obtained from nine sample dosimeters under five different dose rates.The mean prediction error of the CAK prediction model was within ±4.5%,and the maximum prediction error was about ±10%.展开更多
The characteristics of the photonic crystal vertical cavity surface emitting lasers(PhC-VCSELs) were investigated by using the full vector finite-difference time-domain(FDTD) method through the transverse mode los...The characteristics of the photonic crystal vertical cavity surface emitting lasers(PhC-VCSELs) were investigated by using the full vector finite-difference time-domain(FDTD) method through the transverse mode loss analysis. PhC-VCSELs with different photonic crystal structures were analyzed theoretically and experimentally. Through combining the dual mode confinement of oxide aperture and seven-point-defect photonic crystal structure, the PhC-VCSELs with low threshold current of 0.9 mA and maximum output power of 3.1 mW operating in single fundamental mode were demonstrated. Mode loss analysis method was proven as a reliable and useful way to analyze and optimize the PhC-VCSELs.展开更多
To reduce the difficulty of the epitaxy caused by multiple quantum well infrared photodetector(QWIP)with tunnel compensation structure,an improved structure is proposed.In the new structure,the superlattices are locat...To reduce the difficulty of the epitaxy caused by multiple quantum well infrared photodetector(QWIP)with tunnel compensation structure,an improved structure is proposed.In the new structure,the superlattices are located between the tunnel junction and the barrier as the infrared absorption region,eliminating the effect of doping concentration on the well width in the original structure.Theoretical analysis and experimental verification of the new structure are carried out.The experimental sample is a two-cycle device,each cycle contains a tunnel junction,a superlattice infrared absorption region and a thick barrier.The photosurface of the detector is 200×200μm^2 and the light is optically coupled by 45°oblique incidence.The results show that the optimal operating voltage of the sample is-1.1 V,the dark current is 2.99×10^-8A,and the blackbody detectivity is1.352×10^8 cm·Hz^1/2·W^-1at 77 K.Our experiments show that the new structure can work normally.展开更多
We study the spontaneous Raman scattering (RS) in taper-drawn micro/nano-fibers (MNFs) by employing the photon counting technique. The spectra of RS in five MNFs, which are fabricated by using different heating fl...We study the spontaneous Raman scattering (RS) in taper-drawn micro/nano-fibers (MNFs) by employing the photon counting technique. The spectra of RS in five MNFs, which are fabricated by using different heating flames (hydrogen flame or butane flame) and with different diameters, are measured within a frequency shift range of 1435 cm- 1_3200 cm- 1. From the measured spectra, we observe the RS peaks originated from silica and a unique RS peak with a frequency shift of - 2905 cm-1 (- 87.2 THz). Unlike the former ones, the latter one is not observable in conventional optical fibers. Furthermore, the unique peak becomes obvious and starts to rapidly increase with the decrease of the diameter of MNFs when the diameter is smaller than 2 μm, and the intensity of the unique peak significantly depends on the heating flame used in the fabricating process. Our investigation is useful for the entanglement generation or optical sensing using taper-drawn MNFs.展开更多
A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several param...A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several parameters including inter-element spacing, scales, injected current density and substrate temperature are considered. The actual temperatures obtained through experiment are in excellent agreement with the calculated results, which proves the accuracy of the model. Due to the serious thermal problem, it is essential to design arrays of low self-heating. The analysis can provide a foundation for designing VCSEL arrays in the future.展开更多
We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental re...We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal(idler) field g_(s(i))^(2) decreases with the intensity of signal injection. After applying narrow band filter in signal(idler) band, the value of g_(s(i))^(2) decreases from 1.9 ± 0.02(1.9 ± 0.02) to 1.03 ± 0.02(1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose–Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results.Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network.展开更多
Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is es...Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is established to simulate the far-field profile of the coherent arrays. Some important conclusions are obtained. To achieve a higher quality beam, it is necessary to decrease separation between elements, or to increase the element width. Higher brightness can be achieved in the array with larger scale. Emitted wavelength also has an influence on the far-field profile. These analyses can be extended to the future design of coherent vertical cavity surface emitting laser arrays.展开更多
The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the tr...The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the transverse mode and polarization of VCSEL efficiently.We analyze the far field divergence angle,and birefringence of elliptical hole PC VCSEL.When the ratio of minor axis to major axis b/a = 0.7,the PC VCSEL can obtain single mode and polarization.According to the simulation results,we fabricate the device successfully.The output power is 1.7 mW,the far field divergence angle is less than 10°,and the side mode suppression ratio is over 30 dB.The output power in the Y direction is 20 times that in the X direction.展开更多
An investigation using Monte Carlo simulation on a minitype reference radiation(MRR) for the calibration of gamma personal dosimeters is reported. The distributions of dose rate and scattering gamma spectrum are the m...An investigation using Monte Carlo simulation on a minitype reference radiation(MRR) for the calibration of gamma personal dosimeters is reported. The distributions of dose rate and scattering gamma spectrum are the main simulation objects with the variable physical structures of MRR and the dosimeters as parameters that are to be calibrated. Further, the influences on the reference radiation caused by these parameters are analyzed in detail.This work provides a theoretical basis for better understanding of MRR used for calibration of gamma personal dosimeters. This analysis can help in the development of a calibration technology for such tools based on MRR.展开更多
Semiconductor nanowires have demonstrated excellent electronic and optoelectronic properties.When integrated into photodetectors,excellent device performance can be easily attained.Apart from the exceptional performan...Semiconductor nanowires have demonstrated excellent electronic and optoelectronic properties.When integrated into photodetectors,excellent device performance can be easily attained.Apart from the exceptional performance,these nanowires can also enable robust and mechanically flexible photodetectors for various advanced utilizations that the rigid counterparts cannot perform.These unique applications include personal healthcare,next-generation robotics and many others.In this review,we would first discuss the nanowire fabrication techniques as well as the assembly methods of constructing largescale nanowire arrays.Then,the recent development of flexible photodetectors based on these different nanowire material systems is evaluated in detail.At the same time,we also introduce some recent advancement that allows individual photodetectors to integrate into a more complex system for advanced deployment.Finally,a short conclusion and outlook of challenges faced in the future of the community is presented.展开更多
We experimentally demonstrate a heralded single photon source at 1290 nm by exploiting the spontaneous four wave mixing in a taper-drawn micro/nano-fiber(MNF). Because the frequency detuning between the pump and her...We experimentally demonstrate a heralded single photon source at 1290 nm by exploiting the spontaneous four wave mixing in a taper-drawn micro/nano-fiber(MNF). Because the frequency detuning between the pump and heralded single photons is ~58 THz, the contamination by Raman scattering is significantly reduced at room temperature. Since the MNF is naturally connected to standard single mode fibers via fiber tapers, the source would be compatible with the existing fiber networks. When the emission rate of heralded signal photons is about 4.6 kHz, the measured second-order intensity correlation function g(2)(0) is 0.017 ± 0.002, which is suppressed by a factor of more than 55, relative to the classical limit.展开更多
Transition metal dichalcogenides(TMDs), as one of the most promising two-dimensional(2D) materials, have attracted considerable attention for use in photodetection applications over the past few years due to their dis...Transition metal dichalcogenides(TMDs), as one of the most promising two-dimensional(2D) materials, have attracted considerable attention for use in photodetection applications over the past few years due to their distinct properties, such as atomic-scale thickness, tunable direct bandgaps, and decent carrier mobilities at room temperature. Compared with pure 2D TMDs, the construction of hybrids consisting of TMDs and other low-dimensional materials can further improve the performance of photodetectors including their spectral range, responsivity and detectivity, which significantly boosts interest in the development of TMDs-based photodetectors. On the other hand, solution-phase synthesis methods provide a facile strategy for the scalable production of TMD hybrids, opening an exciting avenue to develop low-cost devices. In this review, we summarize the material synthesis, characterizations, and photodetection applications of the solution processable TMDs-based hybrids, as well as provide insights into their prospects.展开更多
Reconfigurable devices can be used to achieve multiple logic operation and intelligent optical sensing with low power consumption,which is promising candidates for new generation electronic and optoelectronic integrat...Reconfigurable devices can be used to achieve multiple logic operation and intelligent optical sensing with low power consumption,which is promising candidates for new generation electronic and optoelectronic integrated circuits.However,the versatility is still limited and need to be extended by the device architectures design.Here,we report an asymmetrically gate two-dimensional(2D)van der Waals heterostructure with hybrid dielectric layer SiO_(2)/hexagonal boron nitride(h-BN),which enable rich function including reconfigurable logic operation and in-sensor information encryption enabled by both volatile and non-volatile optoelectrical modulation.When the partial gate is grounded,the non-volatile light assisted electrostatic doping endowed partially reconfigurable doping between n-type and p-type,which allow the switching of logic XOR and not implication(NIMP).When the global gate is grounded,additionally taking the optical signal as another input signal,logic AND and OR is realized by combined regulation of the light and localized gate voltage.Depending on the high on/off current ratio approaching 105 and reliable&switchable logic gate,in-sensor information encryption and decryption is demonstrated by manipulating the logic output.Hence,these results provide strong extension for current reconfigurable electronic and optoelectronic devices.展开更多
Photo-responsive slippery lubricant-infused porous surface(SLIPS) for droplet manipulation is flexible, noncontact and non-destructive in droplet manipulation, which has promising applications in flexible robotics, mi...Photo-responsive slippery lubricant-infused porous surface(SLIPS) for droplet manipulation is flexible, noncontact and non-destructive in droplet manipulation, which has promising applications in flexible robotics, microfluidics,biomedicine, and chemical analysis. However, the repeated manipulations for droplets of SLIPSs are quite limited in the works reported so far, the poor durability of droplet manipulation severely limits the practical application of the surfaces. In this paper, an Fe3O4-doped polydimethylsiloxane(PDMS)-based SLIPS is proposed and implemented to achieve ultra-high repeated droplet manipulation numbers under near-infrared ray(NIR) laser irradiation. Firstly, a micron columnar array structure with micro-pits on the top side, as well as, a wall structure out of the array is designed on SLIPS to reserve the lubricant. Secondly, the prototype of the SLIPS is fabricated by a 3-step ultraviolet(UV) lithography, and subsequently immersed in silicone oil for more than 96 h to obtain the ultra-high durability slippery lubricant-infused porous surface(UD-SLIPS). With a power of 25 m W–85 m W NIR laser, the repeated manipulation of microdroplets(≤ 5 μL) in the scale of 1 cm can exceed more than 3000 times which is far beyond that in previous reports. Finally, the droplet manipulation performance of this photo-responsive UD-SLIPS and the influence of infusion time on durability are investigated. The mechanism of the PDMS swelling effect is found to be the key factor in improving the droplet manipulation durability of SLIPS. The findings of this work would be of great significance for the development of highly durable photo-responsive functional surfaces for droplet manipulation.展开更多
Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences amo...Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electroni- cally controlled beam steering with a maximum deflection angle of 1.6° is successfully achieved in the 1 × 2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.展开更多
In this study, we illustrate the effective medium theories in the designs of three-dimensional composite metama- terials of both negative permittivity and negative permeability. The proposed metamaterial consists of r...In this study, we illustrate the effective medium theories in the designs of three-dimensional composite metama- terials of both negative permittivity and negative permeability. The proposed metamaterial consists of random coated spheres with sizes smaller compared to the wavelength embedded in a dielectric host. Simple design rules and formulas following the effective medium models are numerically and analytically presented. We demonstrate that the revised Maxwell-Garnett effective medium theory enables us to design three-dimensional composite metamaterials through the assembly of coated spheres which are random and much smaller than the wavelength of the light. The proposed ap- proach allows for the precise control of the permittivity and the permeability and guides a facile, flexible, and versatile way for the fabrication of composite metamaterials.展开更多
文摘This article addresses the past,present,and future status of hybrid plasmonic waveguides(HPWs).It presents a comprehensive review of HPW-based photonic integrated circuits(PICs),covering both passive and active devices,as well as potential application of on-chip HPWbased devices.HPW-based integrated circuits(HPWICs)are compatible with complementary metal oxide semiconductor technology,and their matched refractive indices enables the adaptation of existing fabrication processes for silicon-on-insulator designs.HPWs combine plasmonic and photonic waveguide components to provide strong confinement with longer propagation length L_(p)of HP modes with nominal losses.These HPWs are able to make a trade-off between low loss and longer L_(p),which is not possible with independent plasmonic and photonic waveguide components owing to their inability to simultaneously achieve low propagation loss with rapid and effective all-optical functionality.With HPWs,it is possible to overcome challenges such as high Ohmic losses and enhance the functional performance of PICs through the use of multiple discrete components.HPWs have been employed not only to guide transverse magnetic modes but also for optical beam manipulation,wireless optical communication,filtering,computation,sensing of bending,optical signal emission,and splitting.They also have the potential to play a pivotal role in optical communication systems for quantum computing and within data centers.At present,HPW-based PICs are poised to transform wireless chip-to-chip communication,a number of areas of biomedical science,machine learning,and artificial intelligence,as well as enabling the creation of densely integrated circuits and highly compact photonic devices.
基金supported by the National Natural Science Foundation of China(62374150)Natural Science Foundation of Henan(242300421216)+3 种基金C.Zheng acknowledges the support of China Postdoctoral Science Foundation(Grant No.2023TQ0296)the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20232389)Y.Xie acknowledges the support of National Natural Science Foundation of China(62074011,62134008)Beijing Outstanding Young Scientist Program(JWZQ20240102009).
文摘Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologies ever developed,which has profoundly reshaped the modern life with a wide range of applications.In recent decades,semiconductor technology has rapidly evolved from first-generation narrow bandgap materials(Si,Ge)to the latest fourth-generation ultra-wide bandgap semiconductor(GaO,diamond,AlN)with enhanced performance to meet growing demands.Additionally,merging semiconductor devices with other techniques,such as computer assisted design,state-of-the-art micro/nano fabrications,novel epitaxial growth,have significantly accelerated the development of semiconductor optoelectronics devices.Among them,integrating metasurfaces with semiconductor optoelectronic devices have opened new frontiers for on-chip control of their electromagnetic response,providing access to previously inaccessible degrees of freedom.We review the recent advances in on-chip control of a variety of semiconductor optoelectronic devices using integrated metasurfaces,including semiconductor lasers,semiconductor light emitting devices,semiconductor photodetectors,and low dimensional semiconductors.The integration of metasurfaces with semiconductors offers wafer-level ultracompact solutions for manipulating the functionalities of semiconductor devices,while also providing a practical platform for implementing cuttingedge metasurface technology in real-world applications.
基金supported by National Key Research and Development Program(grant 2019YFB2205100)National Science Foundation of China(grant 92064001)。
文摘The finding of the robust ferroelectricity in HfO_(2)-based thin films is fantastic from the view point of both the fundamentals and the applications.In this review article,the current research status of the future prospects for the ferroelectric HfO_(2)-based thin films and devices are presented from fundamentals to applications.The related issues are discussed,which include:1)The ferroelectric characteristics observed in HfO_(2)-based films and devices associated with the factors of dopant,strain,interface,thickness,defect,fabrication condition,and more;2)physical understanding on the observed ferroelectric behaviors by the density functional theory(DFT)-based theory calculations;3)the characterizations of microscopic and macroscopic features by transmission electron microscopes-based and electrical properties-based techniques;4)modeling and simulations,5)the performance optimizations,and 6)the applications of some ferroelectric-based devices such as ferroelectric random access memory,ferroelectric-based field effect transistors,and the ferroelectric tunnel junction for the novel information processing systems.
基金Project supported by the Foundation of Based Technology of China(Grant No.YXBGD20151JL01)the National Natural Science Foundation of China(Grant Nos.61376049,61604007,11674016,61378058,61575008,and 61574011)+1 种基金the Natural Science Foundation of Beijing City,China(Grant Nos.4172009 and4152003)the Beijing Municipal Commission of Education of China(Grant Nos.PXM2017 014204 500034 and PXM2016 014204 500018)
文摘Interference filter-stabilized external cavity diode lasers (ECDLs) have properties of simple configurations, high sta- bilities, and narrow linewidths. However, the interference filter used in common ECDL designs requires an ultra-narrow bandwidth (about 0.3 nm) to achieve mode selection, that is considerably expensive and not yet available for a wide range of wavelengths. In this paper, a robust ECDL using an available broad bandwidth (about 4 nm) interference filter as the wavelength discriminator is constructed and tested. The ECDL demonstrated a narrow Lorentzian fitted linewidth of 95 kHz and a spectral purity of 2.9 MHz. The long-term frequency stability of the ECDL reaches 5.59 x 10 12.
文摘A minitype reference radiation(MRR) with dimensions of only 1 m × 1 m × 1 m has been developed for the in situ calibration of photon dosimeters.The present work conducts a feasibility study on determining the conventional true value of gamma-ray air kerma at the point of test in the MRR.Owing to its smaller dimensions,the scattered gamma-rays in the MRR are expected to induce a non-negligible interference with the radiation field compared with conditions in the standard reference radiation stipulated by ISO4037-1 or GB/T12162.1.A gamma-ray spectrometer was employed to obtain the spectra of scattered gamma-rays within the MRR,and the feature components of the spectra were extracted by principal component analysis to characterize the interference of a dosimeter probe in the radiation field.A prediction model of the CAK at the point of test was built by least squares support vector machine based on the feature component data obtained from nine sample dosimeters under five different dose rates.The mean prediction error of the CAK prediction model was within ±4.5%,and the maximum prediction error was about ±10%.
基金supported by the National Basic Research Program of China(Grant Nos.2010CB934104,2009CB320300,and 2011CBA00608)the National Natural Foundation of China(Grant Nos.61604007,61378058,61376049,61575008,and 61574011)
文摘The characteristics of the photonic crystal vertical cavity surface emitting lasers(PhC-VCSELs) were investigated by using the full vector finite-difference time-domain(FDTD) method through the transverse mode loss analysis. PhC-VCSELs with different photonic crystal structures were analyzed theoretically and experimentally. Through combining the dual mode confinement of oxide aperture and seven-point-defect photonic crystal structure, the PhC-VCSELs with low threshold current of 0.9 mA and maximum output power of 3.1 mW operating in single fundamental mode were demonstrated. Mode loss analysis method was proven as a reliable and useful way to analyze and optimize the PhC-VCSELs.
基金supported by Beijing Natural Science Foundation (No. 4182011)the Development Foundation for Optoelectronics Technology Lab, Ministry of Education (No. PXM 2018_014204_500020)National Natural Science Foundation of China (No. 61751502)
文摘To reduce the difficulty of the epitaxy caused by multiple quantum well infrared photodetector(QWIP)with tunnel compensation structure,an improved structure is proposed.In the new structure,the superlattices are located between the tunnel junction and the barrier as the infrared absorption region,eliminating the effect of doping concentration on the well width in the original structure.Theoretical analysis and experimental verification of the new structure are carried out.The experimental sample is a two-cycle device,each cycle contains a tunnel junction,a superlattice infrared absorption region and a thick barrier.The photosurface of the detector is 200×200μm^2 and the light is optically coupled by 45°oblique incidence.The results show that the optimal operating voltage of the sample is-1.1 V,the dark current is 2.99×10^-8A,and the blackbody detectivity is1.352×10^8 cm·Hz^1/2·W^-1at 77 K.Our experiments show that the new structure can work normally.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304222 and 11527808)the State Key Development Program for Basic Research of China(Grant No.2014CB340103)
文摘We study the spontaneous Raman scattering (RS) in taper-drawn micro/nano-fibers (MNFs) by employing the photon counting technique. The spectra of RS in five MNFs, which are fabricated by using different heating flames (hydrogen flame or butane flame) and with different diameters, are measured within a frequency shift range of 1435 cm- 1_3200 cm- 1. From the measured spectra, we observe the RS peaks originated from silica and a unique RS peak with a frequency shift of - 2905 cm-1 (- 87.2 THz). Unlike the former ones, the latter one is not observable in conventional optical fibers. Furthermore, the unique peak becomes obvious and starts to rapidly increase with the decrease of the diameter of MNFs when the diameter is smaller than 2 μm, and the intensity of the unique peak significantly depends on the heating flame used in the fabricating process. Our investigation is useful for the entanglement generation or optical sensing using taper-drawn MNFs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61376049,61076044,61107026,61204011and U1037602the Natural Science Foundation of Beijing under Grant Nos 4132006,4102003,and 4112006+1 种基金the Scientific Research Fund Project of Municipal Education Commission of Beijing under Grant No KM201210005004the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20121103110018
文摘A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several parameters including inter-element spacing, scales, injected current density and substrate temperature are considered. The actual temperatures obtained through experiment are in excellent agreement with the calculated results, which proves the accuracy of the model. Due to the serious thermal problem, it is essential to design arrays of low self-heating. The analysis can provide a foundation for designing VCSEL arrays in the future.
基金Project supported by the National Natural Science Foundation of China(Grant No.11527808)the State Key Development Program for Basic Research of China(Grant No.2014CB340103)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120032110055)the Natural Science Foundation of Tianjin,China(Grant No.14JCQNJC02300)the Program for Changjiang Scholars and Innovative Research Team in University,Chinathe Program of Introducing Talents of Discipline to Universities,China(Grant No.B07014)
文摘We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal(idler) field g_(s(i))^(2) decreases with the intensity of signal injection. After applying narrow band filter in signal(idler) band, the value of g_(s(i))^(2) decreases from 1.9 ± 0.02(1.9 ± 0.02) to 1.03 ± 0.02(1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose–Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results.Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61376049,61076044,61107026 and 61204011the Scientific Research Fund Project of Municipal Education Commission of Beijing under Grant No PXM2014-014204-07-000018
文摘Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is established to simulate the far-field profile of the coherent arrays. Some important conclusions are obtained. To achieve a higher quality beam, it is necessary to decrease separation between elements, or to increase the element width. Higher brightness can be achieved in the array with larger scale. Emitted wavelength also has an influence on the far-field profile. These analyses can be extended to the future design of coherent vertical cavity surface emitting laser arrays.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA03Z402)the Beijing Municipal Natural Science Foundation,China (Grant Nos. 4092007,4112006,4102003,and 4132006)+1 种基金the National Natural Science Foundation of China (Grant Nos. 61076044,61036002,61036009,and 60978067)the Doctoral Fund of the Ministry of Education of China (Grant No. 20121103110018)
文摘The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the transverse mode and polarization of VCSEL efficiently.We analyze the far field divergence angle,and birefringence of elliptical hole PC VCSEL.When the ratio of minor axis to major axis b/a = 0.7,the PC VCSEL can obtain single mode and polarization.According to the simulation results,we fabricate the device successfully.The output power is 1.7 mW,the far field divergence angle is less than 10°,and the side mode suppression ratio is over 30 dB.The output power in the Y direction is 20 times that in the X direction.
基金supported by the National Natural Science Foundation of China(Nos.11805111 and 11525521)the Fundamental Research Funds for the Central Universities(No.2018CDGFGD0008)
文摘An investigation using Monte Carlo simulation on a minitype reference radiation(MRR) for the calibration of gamma personal dosimeters is reported. The distributions of dose rate and scattering gamma spectrum are the main simulation objects with the variable physical structures of MRR and the dosimeters as parameters that are to be calibrated. Further, the influences on the reference radiation caused by these parameters are analyzed in detail.This work provides a theoretical basis for better understanding of MRR used for calibration of gamma personal dosimeters. This analysis can help in the development of a calibration technology for such tools based on MRR.
基金Fund of the Research Grants Council of Hong Kong SAR, China (CityU 11211317)the National Natural Science Foundation of China (Grants 51672229)+1 种基金the Science Technology and Innovation Committee of Shenzhen Municipality (Grant JCYJ20170818095520778)a grant from the Shenzhen Research Institute, City University of Hong Kong
文摘Semiconductor nanowires have demonstrated excellent electronic and optoelectronic properties.When integrated into photodetectors,excellent device performance can be easily attained.Apart from the exceptional performance,these nanowires can also enable robust and mechanically flexible photodetectors for various advanced utilizations that the rigid counterparts cannot perform.These unique applications include personal healthcare,next-generation robotics and many others.In this review,we would first discuss the nanowire fabrication techniques as well as the assembly methods of constructing largescale nanowire arrays.Then,the recent development of flexible photodetectors based on these different nanowire material systems is evaluated in detail.At the same time,we also introduce some recent advancement that allows individual photodetectors to integrate into a more complex system for advanced deployment.Finally,a short conclusion and outlook of challenges faced in the future of the community is presented.
文摘We experimentally demonstrate a heralded single photon source at 1290 nm by exploiting the spontaneous four wave mixing in a taper-drawn micro/nano-fiber(MNF). Because the frequency detuning between the pump and heralded single photons is ~58 THz, the contamination by Raman scattering is significantly reduced at room temperature. Since the MNF is naturally connected to standard single mode fibers via fiber tapers, the source would be compatible with the existing fiber networks. When the emission rate of heralded signal photons is about 4.6 kHz, the measured second-order intensity correlation function g(2)(0) is 0.017 ± 0.002, which is suppressed by a factor of more than 55, relative to the classical limit.
基金supported by National Natural Science Foundation of China (61805175)the National Young Thousand Talents Plan+2 种基金Beiyang Scholar Plan, Tianjin UniversityJapan Society for the Promotion of Science (JSPS) (JP18K13798)111 Project (B17031)
文摘Transition metal dichalcogenides(TMDs), as one of the most promising two-dimensional(2D) materials, have attracted considerable attention for use in photodetection applications over the past few years due to their distinct properties, such as atomic-scale thickness, tunable direct bandgaps, and decent carrier mobilities at room temperature. Compared with pure 2D TMDs, the construction of hybrids consisting of TMDs and other low-dimensional materials can further improve the performance of photodetectors including their spectral range, responsivity and detectivity, which significantly boosts interest in the development of TMDs-based photodetectors. On the other hand, solution-phase synthesis methods provide a facile strategy for the scalable production of TMD hybrids, opening an exciting avenue to develop low-cost devices. In this review, we summarize the material synthesis, characterizations, and photodetection applications of the solution processable TMDs-based hybrids, as well as provide insights into their prospects.
基金supported by the Beijing Natural Science Foundation(No.JQ20027)the National Science Foundation of China(No.62305013)+2 种基金China Postdoctoral Science Foundation(No.2023M730137)the China National Postdoctoral Program for Innovative Talents(No.BX20230033)Beijing Postdoctoral Research Foundation(No.2023-zz-95).
文摘Reconfigurable devices can be used to achieve multiple logic operation and intelligent optical sensing with low power consumption,which is promising candidates for new generation electronic and optoelectronic integrated circuits.However,the versatility is still limited and need to be extended by the device architectures design.Here,we report an asymmetrically gate two-dimensional(2D)van der Waals heterostructure with hybrid dielectric layer SiO_(2)/hexagonal boron nitride(h-BN),which enable rich function including reconfigurable logic operation and in-sensor information encryption enabled by both volatile and non-volatile optoelectrical modulation.When the partial gate is grounded,the non-volatile light assisted electrostatic doping endowed partially reconfigurable doping between n-type and p-type,which allow the switching of logic XOR and not implication(NIMP).When the global gate is grounded,additionally taking the optical signal as another input signal,logic AND and OR is realized by combined regulation of the light and localized gate voltage.Depending on the high on/off current ratio approaching 105 and reliable&switchable logic gate,in-sensor information encryption and decryption is demonstrated by manipulating the logic output.Hence,these results provide strong extension for current reconfigurable electronic and optoelectronic devices.
基金Project supported by the National Major Scientific Research Instrument Development Project of China (Grant No. 51927804)the National Natural Science Foundation of China (Grant No. 62275216)the Science and Technology Innovation Team Project of Shaanxi Province (Grant Nos. S2018-ZC-TD-0061 and 2023-CX-TD-06)。
文摘Photo-responsive slippery lubricant-infused porous surface(SLIPS) for droplet manipulation is flexible, noncontact and non-destructive in droplet manipulation, which has promising applications in flexible robotics, microfluidics,biomedicine, and chemical analysis. However, the repeated manipulations for droplets of SLIPSs are quite limited in the works reported so far, the poor durability of droplet manipulation severely limits the practical application of the surfaces. In this paper, an Fe3O4-doped polydimethylsiloxane(PDMS)-based SLIPS is proposed and implemented to achieve ultra-high repeated droplet manipulation numbers under near-infrared ray(NIR) laser irradiation. Firstly, a micron columnar array structure with micro-pits on the top side, as well as, a wall structure out of the array is designed on SLIPS to reserve the lubricant. Secondly, the prototype of the SLIPS is fabricated by a 3-step ultraviolet(UV) lithography, and subsequently immersed in silicone oil for more than 96 h to obtain the ultra-high durability slippery lubricant-infused porous surface(UD-SLIPS). With a power of 25 m W–85 m W NIR laser, the repeated manipulation of microdroplets(≤ 5 μL) in the scale of 1 cm can exceed more than 3000 times which is far beyond that in previous reports. Finally, the droplet manipulation performance of this photo-responsive UD-SLIPS and the influence of infusion time on durability are investigated. The mechanism of the PDMS swelling effect is found to be the key factor in improving the droplet manipulation durability of SLIPS. The findings of this work would be of great significance for the development of highly durable photo-responsive functional surfaces for droplet manipulation.
基金Supported by the‘Supporting First Action’Joint Foundation for Outstanding Postdoctoral Program under Grant Nos Y7YBSH0001 and Y7BSH14001the National Natural Science Foundation of China under Grant No 61434006the National Key Basic Research Program of China under Grant No 2017YFB0102302
文摘Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electroni- cally controlled beam steering with a maximum deflection angle of 1.6° is successfully achieved in the 1 × 2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61107053,61138001,and 61007034)the Tianjin Natural Science Foundation,China (Grant No. 11JCYBJC25900)
文摘In this study, we illustrate the effective medium theories in the designs of three-dimensional composite metama- terials of both negative permittivity and negative permeability. The proposed metamaterial consists of random coated spheres with sizes smaller compared to the wavelength embedded in a dielectric host. Simple design rules and formulas following the effective medium models are numerically and analytically presented. We demonstrate that the revised Maxwell-Garnett effective medium theory enables us to design three-dimensional composite metamaterials through the assembly of coated spheres which are random and much smaller than the wavelength of the light. The proposed ap- proach allows for the precise control of the permittivity and the permeability and guides a facile, flexible, and versatile way for the fabrication of composite metamaterials.