The contributions of urban surface expansion to regional warming over subregions of Shanghai and Shanghai as a whole using different methods to calculate the daily mean surface temperature(SAT),including the averages ...The contributions of urban surface expansion to regional warming over subregions of Shanghai and Shanghai as a whole using different methods to calculate the daily mean surface temperature(SAT),including the averages of four daily time-records(0000,0600,1200,and 1800 UTC;T4),eight daily time-records(0000,0300,0600,0900,1200,1500,1800,and 2100 UTC;T8),and the averages of the SAT maximum(Tmax)and minimum(Tmin),Txn,were compared based on simulated results using nested numerical intergrations with the Weather Research and Forecasting regional climate model,where only the satellite-retrieved urban surface distributions differed between two numerical experiments.The contributions from urban-related warming expressed similar intensities when using T8 and Txn,while the smallest values occurred when using T4 over different subregions of Shanghai(with the exception of areas that were defined as urban for both time periods(U2U))and Shanghai as a whole.Similar values for the changing trends could be detected over different subregions when no urban surface expansion(EX1)was detected for both T4 and Txn.The corresponding values increased under urban surface expansion(EX2)and varied over different subregions,revealing much stronger intensities over urban-surface expansion areas;the weakest intensities occurred over U2U areas.The increasing trends for EX2 and relative contributions when using T4 were smaller than those when using Txn,with the exception of those over U2U areas,which could be explained by the changing trends in Tmax and Tmin due to urban surface expansion,especially during intense urban expansion periods.展开更多
Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon clim...Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon climate. The objective of this study is to identify a reasonable configuration of physical parameterization schemes to simulate the precipitation and temperature in this large area. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YSU) PBL schemes, the WSM3 and WSM5 microphysics schemes, and the Betts-Miller-Janjic (BMJ) and Tiedtke cumulus schemes are compared through simulation of the regional climate of summer 2008. All cases exhibit a similar spatial distribution of temperature as observed, and the spatial correlation coefficients are all higher than 0.95. The cases combining MY J, WSM3/WSM5, and BMJ have the smallest biases of temperature. The choice of PBL scheme has a significant effect on precipitation in such a large area. The cases with MYJ reproduce a better distribution of rain belts, while YSU strongly overestimates the precipitation intensity. The precipitation simulated using WSM3 is similar to that using WSM5. The BMJ cumulus scheme combined with the MYJ PBL scheme has a smaller bias of precipitation. However, the Tiedtke scheme reproduces the precipitation pattern better, especially over the ITCZ.展开更多
Daily precipitation and temperature records at 13 stations for the period 1960-2008 were analyzed to identify climatic change and possible effects of urbanization on low-temperature precipitation [LTP, precipitation ...Daily precipitation and temperature records at 13 stations for the period 1960-2008 were analyzed to identify climatic change and possible effects of urbanization on low-temperature precipitation [LTP, precipitation of ≥ 0.1 mm d^-1 occurring under a daily minimum temperature (Tmin) of ≤ 0℃] in the greater Beijing region (B JR), where a rapid process of urbaniza tion has taken place over the last few decades. The paper provides a climatological overview of LTP in B JR. LTP contributes 61.7% to the total amount of precipitation in B JR in the cold season (November-March). There is a slight increasing trend [1.22 mm (10 yr)^-1] in the amount of total precipitation for the cold season during 1960-2008. In contrast, the amount of LTP decreases by 0.6 mm (10 yr)^-1. The warming rate of Train in B JR is 0.66℃ (10 yr)^-1. Correspondingly, the frequency of LTP decreases with increasing Tmin by -0.67 times per ℃. The seasonal frequency and amount of LTP in southeast B JR (mostly urban sites) are 17%-20% less than those in the northwestern (rural and montane sites). The intensity of LTP for the urban sites and northeastern B JR exhibited significant enhancing trends [0.18 and 0.15 mm d^- 1 (10 yr)^- 1, respectively]. The frequency of slight LTP (〈0.2 mm d^-1) significantly decreased throughout B JR [by about -15.74% (10 yr)^-1 in the urban area and northeast B JR], while the contribution of the two heaviest LTP events to total LTP amount significantly increased by 3.2% (10 yr) ^-1.展开更多
Flash drought is a rapidly intensifying drought with abnormally high temperature,which has greatly threatened crop yields and water supply,and aroused wide public concern in a warming climate.However,the preferable hy...Flash drought is a rapidly intensifying drought with abnormally high temperature,which has greatly threatened crop yields and water supply,and aroused wide public concern in a warming climate.However,the preferable hydrometeorological conditions for flash drought and its association with conventional drought at longer time scales remain unclear.Here,we investigate two types of flash drought over China:one is high-temperature driven(Type Ⅰ),while the other is water-deficit driven(Type Ⅱ).Results show that the frequencies of the two types of flash drought averaged over China during the growing season are comparable.Type I flash drought tends to occur over southern China,where moisture supply is sufficient,while Type Ⅱ is more likely to occur over semi-arid regions such as northern China.Both types of flash drought increase significantly(p<0.01)during 1979–2010,with a doubled rise in Type Ⅰ as compared with Type Ⅱ.Composite analysis shows that high temperature quickly increases evapotranspiration(ET)and reduces soil moisture from two pentads before the onset of Type Ⅰ flash drought.In contrast,there are larger soil moisture deficits two pentads before the onset of Type Ⅱ flash drought,leading to a decrease in ET and increase in temperature.For flash drought associated with seasonal drought,there is a greater likelihood of occurrence during the onset and recovery phases of seasonal drought,suggesting perfect conditions for flash drought during transition periods.This study provides a basis for the early warning of flash drought by connecting multiscale drought phenomena.展开更多
Using observed daily precipitation data to classify five levels of rainy days by strength in South China (SC),with an emphasis on the Pearl River Delta (PRD) region,the spatiotemporal variation of different grades...Using observed daily precipitation data to classify five levels of rainy days by strength in South China (SC),with an emphasis on the Pearl River Delta (PRD) region,the spatiotemporal variation of different grades of precipitation during the period 1960-2010 was analyzed and the possible link with anthropogenic aerosols examined.Statistical analysis showed that drizzle and small precipitation has significantly decreased,whereas medium to heavy precipitation has increased slightly over the past 50 years (although not statistically significant).Further data analysis suggested that the decline in drizzle and small precipitation probably has a strong link to increased concentrations of anthropogenic aerosols produced by large-scale human activities related to the rapid socioeconomic development of the PRD region.These aerosols may also have led to the obvious decreasing trend in horizontal visibility and sunshine duration in SC,which is statistically significant according to the t-test.展开更多
Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(...Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(SWI),of annual precipitation to potential evapotranspiration(PET)being below 0.65.PET is commonly estimated using the Thornthwaite(PET Th)and Penman–Monteith equations(PET PM).The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM.Results showed vast differences between PET Th and PET PM;however,the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands,except in North America,with high correlation coefficients ranging from 0.58 to 0.89.It was found that,during 1901–2014,global hyper-arid and semi-arid regions expanded,arid and dry sub-humid regions contracted,and drylands underwent interdecadal fluctuation.This was because precipitation variations made major contributions,whereas PET changes contributed to a much lesser degree.However,distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found.This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry–wet transition zone.Additionally,the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming,and the Thornthwaite method was found to be increasingly less applicable under climate change.展开更多
Reforestation has attracted worldwide attention because of its multiple environmental benefits,but its impact on water resources is complicated and still controversial. In this study, the authors conducted numerical e...Reforestation has attracted worldwide attention because of its multiple environmental benefits,but its impact on water resources is complicated and still controversial. In this study, the authors conducted numerical experiments within and around the Yellow River basin under the Grain-forGreen project using the Weather Research and Forecasting model. The results showed that the terrestrial water cycle process was sensitive to land use/cover change in the study region. Under the increase of mixed forests within and below the basin, the basin-averaged precipitation and evaporation increased by 223.17 and 223.88 mm respectively, but the surface runoff decreased by 2.22 mm from 2006 to 2010. In other words, the forest-induced increase in evaporation exceeded that of precipitation along with decreased surface runoff. Importantly, the afforestation effects on water resources seemed to enhance with time, and the effects of the same vegetation change were different in dry and wet years with different precipitation amounts(i.e. different atmospheric circulation background). It should be noted that it is difficult to obtain one product that can explicitly reflect the spatial distribution of actual land cover change promoted by the Grain-for-Green project in the Yellow River basin, which is an important obstacle to clearly identify the reforestation impacts. A land cover dataset derived from advantages of multiple sets of data therefore needs to be proposed.展开更多
The interdecadal variability of precipitation over sub-Saharan Africa (SSA) and central North China (CNC) is examined and compared in this study. Previous studies have found that the two regions have similar interdeca...The interdecadal variability of precipitation over sub-Saharan Africa (SSA) and central North China (CNC) is examined and compared in this study. Previous studies have found that the two regions have similar interdecadal dry–wet evolution in the past 100 years. The results show obvious decadal precipitation fluctuations in the two regions. In CNC, a persistent negative precipitation anomaly is detected from the early 1970s to the 2000s. In SSA, a negative precipitation anomaly is apparent since the late 1970s, while a distinct upward trend is found since the 1990s although the precipitation anomaly is still negative. Significant correlation is found between the decadal precipitation anomalies in SSA and the SST modes (Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO)), as well as the North Atlantic Oscillation (NAO), while in CNC the decadal precipitation is influenced by the NAO and PDO. The EOF results show that the total explained variance of the first four EOFs in SSA is smaller than that of CNC. The fourth and third modes in SSA are significantly associated with the AMO and PDO respectively, while the first, third, and fourth modes are significantly associated with the NAO. The first mode in CNC is significantly associated with the NAO. The first mode of the precipitation anomaly in SSA fluctuates out of phase with that in CNC, while in-phase changes are apparent among the third and the fourth modes.展开更多
The regional mean surface air temperature(SAT)in China has risen with a rate of 1.3–1.7℃(100 yr)^-1 since 1900,based on the recently developed homogenized observations.This estimate is larger than those[0.5–0.8℃(1...The regional mean surface air temperature(SAT)in China has risen with a rate of 1.3–1.7℃(100 yr)^-1 since 1900,based on the recently developed homogenized observations.This estimate is larger than those[0.5–0.8℃(100 yr)^-1]adopted in the early National Reports of Climate Change in China.The present paper reviews the studies of the longterm SAT series of China,highlighting the homogenization of station observations as the key progress.The SAT series of China in early studies showed a prominent warm peak in the 1940s,mainly due to inhomogeneous records associated with site-moves of a number of stations from urban to outskirts in the early 1950s,thus leading to underestimates of the centennial warming trend.Parts of China were relatively warm around the 1940s but with differentphase interdecadal variations,while some parts were even relatively cool.This fact is supported by proxy data and could partly be explained by interdecadal changes in large-scale circulation.The effect of urbanization should have a minor contribution to the observed warming in China,although the estimates of such contributions for individual urban stations remain controversial.Further studies relevant to the present topic are discussed.展开更多
Model simulations show that drought may become more severe and widespread in the 21st century due to humaninduced global warming. However, the contributions from the key factors to the model-projected drought changes ...Model simulations show that drought may become more severe and widespread in the 21st century due to humaninduced global warming. However, the contributions from the key factors to the model-projected drought changes in China have not yet been examined in detail. We used the self-calibrated Palmer Drought Severity Index with Penman–Monteith potential evapotranspiration(scPDSIpm) based on 10 model simulations selected from the Coupled Model Intercomparison Project Phase 6(CMIP6). We investigated the contributions from precipitation(P), near-surface air temperature and specific humidity [Δ(T + q)], net surface longwave radiation(LW), net surface shortwave radiation(SW), and wind speed(WS) to the future changes in scPDSIpm, including the long-term mean, drying area,probability distribution function(PDF), drought frequency, and drought duration based on the scPDSIpm over China.Our results show that model-projected drying mainly occurs over southern China, whereas the dry areas under drought conditions increase from 20% to about 23%/30% under the two scenarios of the shared socioeconomic pathway(SSP2-4.5/SSP5-8.5) from 1985 to 2100, despite large uncertainties in individual projections partly due to internal variability. Drought frequency is projected to increases by about 10%–54%(15%–88%) under the SSP2-4.5(SSP5-8.5) scenario by the late 21st century, along with increases in drought duration. These changes are accompanied by a decrease in the mean scPDSIpm and flattening of the PDFs. The changes in drying over southern China are mainly attributed to surface warming and the increased surface vapor pressure deficit(VPD), with small contributions from changes in the surface net radiation. The changes in wetting over northern China mostly result from increased precipitation along with a small wetting effect from the changes in wind speed.展开更多
The accuracy of land surface hydrological simulations using an offline land surface model(LSM)depends largely on the quality of the atmospheric forcing data.In this study,Global Land Data Assimilation System(GLDAS)for...The accuracy of land surface hydrological simulations using an offline land surface model(LSM)depends largely on the quality of the atmospheric forcing data.In this study,Global Land Data Assimilation System(GLDAS)forcing data and the newly developed China Meteorological Administration Land Data Assimilation System(CLDAS)forcing data are used to drive the Noah LSM with multiple parameterizations(Noah-MP)and to explore how the newly developed CLDAS forcing data improve land surface hydrological simulations over China's Mainland.The monthly soil moisture(SM)and evapotranspiration(ET)simulations are then compared and evaluated against observations.The results show that the Noah-MP driven by the CLDAS forcing data(referred to as CLDASNoah-MP)significantly improves the simulations in most cases over China's Mainland and its eight river basins.CLDASNoahMP increases the correlation coefficient(R)values from 0.451 to 0.534 for the SM simulations at a depth range of 0–10 cm in China's Mainland,especially in the eastern monsoon area such as the Huang–Huai–Hai Plain,the southern Yangtze River basin,and the Zhujiang River basin.Moreover,the root-mean-square error is reduced from 0.078 to0.068 m3 m-3 for the SM simulations,and from 12.9 to 11.4 mm month-1 for the ET simulations over China's Mainland,especially in the southern Yangtze River basin and Zhujiang River basin.This study demonstrates that,by merging more in situ and remote sensing observations in regional atmospheric forcing data,offline LSM simulations can better simulate regional-scale land surface hydrological processes.展开更多
Accurate surface air temperature(T2m)data are key to investigating eco-hydrological responses to global warming.Because of sparse in-situ observations,T2m datasets from atmospheric reanalysis or multi-source observati...Accurate surface air temperature(T2m)data are key to investigating eco-hydrological responses to global warming.Because of sparse in-situ observations,T2m datasets from atmospheric reanalysis or multi-source observation-based land data assimilation system(LDAS)are widely used in research over alpine regions such as the Tibetan Plateau(TP).It has been found that the warming rate of T2m over the TP accelerates during the global warming slowdown period of 1998–2013,which raises the question of whether the reanalysis or LDAS datasets can capture the warming feature.By evaluating two global LDASs,five global atmospheric reanalysis datasets,and a high-resolution dynamical downscaling simulation driven by one of the global reanalysis,we demonstrate that the LDASs and reanalysis datasets underestimate the warming trend over the TP by 27%–86%during 1998–2013.This is mainly caused by the underestimations of the increasing trends of surface downward radiation and nighttime total cloud amount over the southern and northern TP,respectively.Although GLDAS2.0,ERA5,and MERRA2 reduce biases of T2m simulation from their previous versions by 12%–94%,they do not show significant improvements in capturing the warming trend.The WRF dynamical downscaling dataset driven by ERA-Interim shows a great improvement,as it corrects the cooling trend in ERA-Interim to an observation-like warming trend over the southern TP.Our results indicate that more efforts are needed to reasonably simulate the warming features over the TP during the global warming slowdown period,and the WRF dynamical downscaling dataset provides more accurate T2m estimations than its driven global reanalysis dataset ERA-Interim for producing LDAS products over the TP.展开更多
This study investigates why the Arctic winter sea ice loss over the Barents–Kara Seas(BKS) is accelerated in the recent decade. We first divide 1979–2013 into two time periods: 1979–2000(P1) and 2001–13(P2)...This study investigates why the Arctic winter sea ice loss over the Barents–Kara Seas(BKS) is accelerated in the recent decade. We first divide 1979–2013 into two time periods: 1979–2000(P1) and 2001–13(P2), with a focus on P2 and the difference between P1 and P2. The results show that during P2, the rapid decline of the sea ice over the BKS is related not only to the high sea surface temperature(SST) over the BKS, but also to the increased frequency,duration, and quasi-stationarity of the Ural blocking(UB) events. Observational analysis reveals that during P2, the UB tends to become quasi stationary and its frequency tends to increase due to the weakening(strengthening) of zonal winds over the Eurasia(North Atlantic) when the surface air temperature(SAT) anomaly over the BKS is positive probably because of the high SST. Strong downward infrared(IR) radiation is seen to occur together with the quasi-stationary and persistent UB because of the accumulation of more water vapor over the BKS. Such downward IR favors the sea ice decline over the BKS, although the high SST over the BKS plays a major role. But for P1, the UB becomes westward traveling due to the opposite distribution of zonal winds relative to P2, resulting in weak downward IR over the BKS. This may lead to a weak decline of the sea ice over the BKS. Thus, it is likely that the rapid decline of the sea ice over the BKS during P2 is attributed to the joint effects of the high SST over the BKS and the quasi-stationary and long-lived UB events.展开更多
Currently, the Chinese central government is considering plans to build a trilateral economic sphere in the Bohai Bay area, including Beijing, Tianjin and Hebei(BTH), where haze pollution frequently occurs. To achie...Currently, the Chinese central government is considering plans to build a trilateral economic sphere in the Bohai Bay area, including Beijing, Tianjin and Hebei(BTH), where haze pollution frequently occurs. To achieve sustainable development, it is necessary to understand the physical mechanism of the haze pollution there. Therefore, the pollutant transport mechanisms of a haze event over the BTH region from 23 to 24 September 2011 were studied using the Weather Research and Forecasting model and the FLEXible-PARTicle dispersion model to understand the effects of the local atmospheric circulations and atmospheric boundary layer structure. Results suggested that the penetration by sea-breeze could strengthen the vertical dispersion by lifting up the planetary boundary layer height(PBLH) and carry the local pollutants to the downstream areas; in the early night, two elevated pollution layers(EPLs) may be generated over the mountain areas: the pollutants in the upper EPL at the altitude of 2–2.5 km were favored to disperse by long-range transport, while the lower EPL at the altitude of 1 km may serve as a reservoir, and the pollutants there could be transported downward and contribute to the surface air pollution.The intensity of the sea–land and mountain–valley breeze circulations played an important role in the vertical transport and distribution of pollutants. It was also found that the diurnal evolution of the PBLH is important for the vertical dispersion of the pollutants,which is strongly affected by the local atmospheric circulations and the distribution of urban areas.展开更多
There have been considerable high-impact extreme events occurring around the world in the context of climate change.Event attribution studies,which seek to quantitatively answer whether and to what extent anthropogeni...There have been considerable high-impact extreme events occurring around the world in the context of climate change.Event attribution studies,which seek to quantitatively answer whether and to what extent anthropogenic climate change has altered the characteristics-predominantly the probability and magnitude-of particular events,have been gaining increasing interest within the research community.This paper reviews the latest approaches used in event attribution studies through a new classification into three major categories according to how the event attribution question is framed-namely,the risk-based approach,the storyline approach,and the combined approach.Four approaches in the risk-based framing category and three in the storyline framing category are also reviewed in detail.The advantages and disadvantages of each approach are discussed.Particular attention is paid to the ability,suitability,and applicability of these approaches in attributing extreme events in China,a typical monsoonal region where climate models may not perform well.Most of these approaches are applicable in China,and some are more suitable for analyzing temperature events.There is no right or wrong among these approaches,but different approaches have different framings.The uncertainties in attribution results come from several aspects,including different categories of framing,different conditions in climate model approaches,different models,different definitions of the event,and different observational data used.Clarification of these aspects can help to understand the differences in attribution results from different studies.展开更多
Accurate global land cover(GLC), as a key input for scientific communities, is important for a wide variety of applications. In order to understand the current suitability and limitation of GLC products, the discrepan...Accurate global land cover(GLC), as a key input for scientific communities, is important for a wide variety of applications. In order to understand the current suitability and limitation of GLC products, the discrepancy and pixellevel uncertainty in major GLC products in three epochs are assessed in this study by using an integrated uncertainty index(IUI) that combines the thematic uncertainty and local classification accuracy uncertainty. The results show that the overall spatial agreements(Ao values) between GLC products are lower than 58%, and the total areas of forests are very consistent in major GLC products, but significant differences are found in different forest classes.The misclassification among different forest classes and mosaic types can account for about 20% of the total disagreements. The mean IUI almost reaches 0.5, and high uncertainty mostly occurs in transition zones and heterogeneous areas across the world. Further efforts are needed to make in the land cover classifications in areas with high uncertainty. Designing a classification scheme for climate models, with explicit definitions of land cover classes in the threshold of common attributes, is urgently needed. Information of the pixel-level uncertainty in major GLC products not only give important implications for the specific application, but also provide a quite important basis for land cover fusion.展开更多
基金This work was supported by the National Natural Science Foundation of China [grant numbers 41775087 and41675149]the National Key R&D Program of China [grant number 2016YFA0600403]+2 种基金the Chinese Academy of Sciences Strategic Priority Program [grant number XDA05090206]the National Key Basic Research Program on Global Change [grant number 2011CB952003]the Jiangsu Collaborative Innovation Center for Climatic Change
文摘The contributions of urban surface expansion to regional warming over subregions of Shanghai and Shanghai as a whole using different methods to calculate the daily mean surface temperature(SAT),including the averages of four daily time-records(0000,0600,1200,and 1800 UTC;T4),eight daily time-records(0000,0300,0600,0900,1200,1500,1800,and 2100 UTC;T8),and the averages of the SAT maximum(Tmax)and minimum(Tmin),Txn,were compared based on simulated results using nested numerical intergrations with the Weather Research and Forecasting regional climate model,where only the satellite-retrieved urban surface distributions differed between two numerical experiments.The contributions from urban-related warming expressed similar intensities when using T8 and Txn,while the smallest values occurred when using T4 over different subregions of Shanghai(with the exception of areas that were defined as urban for both time periods(U2U))and Shanghai as a whole.Similar values for the changing trends could be detected over different subregions when no urban surface expansion(EX1)was detected for both T4 and Txn.The corresponding values increased under urban surface expansion(EX2)and varied over different subregions,revealing much stronger intensities over urban-surface expansion areas;the weakest intensities occurred over U2U areas.The increasing trends for EX2 and relative contributions when using T4 were smaller than those when using Txn,with the exception of those over U2U areas,which could be explained by the changing trends in Tmax and Tmin due to urban surface expansion,especially during intense urban expansion periods.
基金funded by the National Natural Science Foundation of China[General Project,grant number 41275108]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010404]
文摘Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon climate. The objective of this study is to identify a reasonable configuration of physical parameterization schemes to simulate the precipitation and temperature in this large area. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YSU) PBL schemes, the WSM3 and WSM5 microphysics schemes, and the Betts-Miller-Janjic (BMJ) and Tiedtke cumulus schemes are compared through simulation of the regional climate of summer 2008. All cases exhibit a similar spatial distribution of temperature as observed, and the spatial correlation coefficients are all higher than 0.95. The cases combining MY J, WSM3/WSM5, and BMJ have the smallest biases of temperature. The choice of PBL scheme has a significant effect on precipitation in such a large area. The cases with MYJ reproduce a better distribution of rain belts, while YSU strongly overestimates the precipitation intensity. The precipitation simulated using WSM3 is similar to that using WSM5. The BMJ cumulus scheme combined with the MYJ PBL scheme has a smaller bias of precipitation. However, the Tiedtke scheme reproduces the precipitation pattern better, especially over the ITCZ.
基金supported by National Natural Science Foundation of China(Grant No.41075063)Chinese Academy of Sciences Strategic Priority Research Program(Grant No.XDA05090000)National Basic Research Program of China(Grant No.2012CB956200)
文摘Daily precipitation and temperature records at 13 stations for the period 1960-2008 were analyzed to identify climatic change and possible effects of urbanization on low-temperature precipitation [LTP, precipitation of ≥ 0.1 mm d^-1 occurring under a daily minimum temperature (Tmin) of ≤ 0℃] in the greater Beijing region (B JR), where a rapid process of urbaniza tion has taken place over the last few decades. The paper provides a climatological overview of LTP in B JR. LTP contributes 61.7% to the total amount of precipitation in B JR in the cold season (November-March). There is a slight increasing trend [1.22 mm (10 yr)^-1] in the amount of total precipitation for the cold season during 1960-2008. In contrast, the amount of LTP decreases by 0.6 mm (10 yr)^-1. The warming rate of Train in B JR is 0.66℃ (10 yr)^-1. Correspondingly, the frequency of LTP decreases with increasing Tmin by -0.67 times per ℃. The seasonal frequency and amount of LTP in southeast B JR (mostly urban sites) are 17%-20% less than those in the northwestern (rural and montane sites). The intensity of LTP for the urban sites and northeastern B JR exhibited significant enhancing trends [0.18 and 0.15 mm d^- 1 (10 yr)^- 1, respectively]. The frequency of slight LTP (〈0.2 mm d^-1) significantly decreased throughout B JR [by about -15.74% (10 yr)^-1 in the urban area and northeast B JR], while the contribution of the two heaviest LTP events to total LTP amount significantly increased by 3.2% (10 yr) ^-1.
基金supported by the National Key R&D Program of China (2018YFA0606002)the National Natural Science Foundation of China (91547103)+1 种基金the China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201506001)the General Financial Grant from the China Postdoctoral Science Foundation (2018M631553)
文摘Flash drought is a rapidly intensifying drought with abnormally high temperature,which has greatly threatened crop yields and water supply,and aroused wide public concern in a warming climate.However,the preferable hydrometeorological conditions for flash drought and its association with conventional drought at longer time scales remain unclear.Here,we investigate two types of flash drought over China:one is high-temperature driven(Type Ⅰ),while the other is water-deficit driven(Type Ⅱ).Results show that the frequencies of the two types of flash drought averaged over China during the growing season are comparable.Type I flash drought tends to occur over southern China,where moisture supply is sufficient,while Type Ⅱ is more likely to occur over semi-arid regions such as northern China.Both types of flash drought increase significantly(p<0.01)during 1979–2010,with a doubled rise in Type Ⅰ as compared with Type Ⅱ.Composite analysis shows that high temperature quickly increases evapotranspiration(ET)and reduces soil moisture from two pentads before the onset of Type Ⅰ flash drought.In contrast,there are larger soil moisture deficits two pentads before the onset of Type Ⅱ flash drought,leading to a decrease in ET and increase in temperature.For flash drought associated with seasonal drought,there is a greater likelihood of occurrence during the onset and recovery phases of seasonal drought,suggesting perfect conditions for flash drought during transition periods.This study provides a basis for the early warning of flash drought by connecting multiscale drought phenomena.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-EW-QN208)the National Basic Research Program of China (Grant No. 2010CB428502)+3 种基金the open fund of the State Key Laboratory of Remote Sensing Science (Grant No. OFSLRSS201113)the CAS Strategic Priority Research Program (Grant No. XDA05110103)the R&D Special Fund for Public Welfare Industry (meteorology) by the Ministry of Financethe Ministry of Science and Technology (Grant No. GYHY20100601404)
文摘Using observed daily precipitation data to classify five levels of rainy days by strength in South China (SC),with an emphasis on the Pearl River Delta (PRD) region,the spatiotemporal variation of different grades of precipitation during the period 1960-2010 was analyzed and the possible link with anthropogenic aerosols examined.Statistical analysis showed that drizzle and small precipitation has significantly decreased,whereas medium to heavy precipitation has increased slightly over the past 50 years (although not statistically significant).Further data analysis suggested that the decline in drizzle and small precipitation probably has a strong link to increased concentrations of anthropogenic aerosols produced by large-scale human activities related to the rapid socioeconomic development of the PRD region.These aerosols may also have led to the obvious decreasing trend in horizontal visibility and sunshine duration in SC,which is statistically significant according to the t-test.
基金sponsored by the National K&D Program of China (Grant No. 2016YFA0600404)the China Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201106028 and GYHY2015060011)+1 种基金the National Natural Science Foundation of China (Grant No. 41530532)the Jiangsu Collaborative Innovation Center for Climate Change
文摘Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(SWI),of annual precipitation to potential evapotranspiration(PET)being below 0.65.PET is commonly estimated using the Thornthwaite(PET Th)and Penman–Monteith equations(PET PM).The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM.Results showed vast differences between PET Th and PET PM;however,the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands,except in North America,with high correlation coefficients ranging from 0.58 to 0.89.It was found that,during 1901–2014,global hyper-arid and semi-arid regions expanded,arid and dry sub-humid regions contracted,and drylands underwent interdecadal fluctuation.This was because precipitation variations made major contributions,whereas PET changes contributed to a much lesser degree.However,distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found.This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry–wet transition zone.Additionally,the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming,and the Thornthwaite method was found to be increasingly less applicable under climate change.
基金jointly sponsored by the National Natural Science Foundation of China [grant numbers 41530532 and 41705072]the National Natural Science Foundation of China [grant number 41605085]+3 种基金the General Financial Grant from the China Postdoctoral Science Foundation [grant number 2016M601102]the Special Fund for Meteorological Scientific Research in the Public Interest [grant number GYHY201106028]the China Special Fund for Meteorological Research in the Public Interest(major projects)[grant number GYHY201506001-1]the Jiangsu Collaborative Innovation Center for Climate Change China
文摘Reforestation has attracted worldwide attention because of its multiple environmental benefits,but its impact on water resources is complicated and still controversial. In this study, the authors conducted numerical experiments within and around the Yellow River basin under the Grain-forGreen project using the Weather Research and Forecasting model. The results showed that the terrestrial water cycle process was sensitive to land use/cover change in the study region. Under the increase of mixed forests within and below the basin, the basin-averaged precipitation and evaporation increased by 223.17 and 223.88 mm respectively, but the surface runoff decreased by 2.22 mm from 2006 to 2010. In other words, the forest-induced increase in evaporation exceeded that of precipitation along with decreased surface runoff. Importantly, the afforestation effects on water resources seemed to enhance with time, and the effects of the same vegetation change were different in dry and wet years with different precipitation amounts(i.e. different atmospheric circulation background). It should be noted that it is difficult to obtain one product that can explicitly reflect the spatial distribution of actual land cover change promoted by the Grain-for-Green project in the Yellow River basin, which is an important obstacle to clearly identify the reforestation impacts. A land cover dataset derived from advantages of multiple sets of data therefore needs to be proposed.
基金the Chinese Academy of SciencesThe World Academy of Sciences(CAS-TWAS)for financial support+1 种基金provided by the National Key R&D Program of China [grant number 2016YFA0600404]the National Natural Science Foundation of China [grant number41530532]
文摘The interdecadal variability of precipitation over sub-Saharan Africa (SSA) and central North China (CNC) is examined and compared in this study. Previous studies have found that the two regions have similar interdecadal dry–wet evolution in the past 100 years. The results show obvious decadal precipitation fluctuations in the two regions. In CNC, a persistent negative precipitation anomaly is detected from the early 1970s to the 2000s. In SSA, a negative precipitation anomaly is apparent since the late 1970s, while a distinct upward trend is found since the 1990s although the precipitation anomaly is still negative. Significant correlation is found between the decadal precipitation anomalies in SSA and the SST modes (Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO)), as well as the North Atlantic Oscillation (NAO), while in CNC the decadal precipitation is influenced by the NAO and PDO. The EOF results show that the total explained variance of the first four EOFs in SSA is smaller than that of CNC. The fourth and third modes in SSA are significantly associated with the AMO and PDO respectively, while the first, third, and fourth modes are significantly associated with the NAO. The first mode in CNC is significantly associated with the NAO. The first mode of the precipitation anomaly in SSA fluctuates out of phase with that in CNC, while in-phase changes are apparent among the third and the fourth modes.
基金Supported by the National Key Technologies Research and Development Program(2017YFE0133600)Chinese Academy of Sciences Pioneering Project(XDA19030402)International Cooperation Project(134111KYSB20160010)。
文摘The regional mean surface air temperature(SAT)in China has risen with a rate of 1.3–1.7℃(100 yr)^-1 since 1900,based on the recently developed homogenized observations.This estimate is larger than those[0.5–0.8℃(100 yr)^-1]adopted in the early National Reports of Climate Change in China.The present paper reviews the studies of the longterm SAT series of China,highlighting the homogenization of station observations as the key progress.The SAT series of China in early studies showed a prominent warm peak in the 1940s,mainly due to inhomogeneous records associated with site-moves of a number of stations from urban to outskirts in the early 1950s,thus leading to underestimates of the centennial warming trend.Parts of China were relatively warm around the 1940s but with differentphase interdecadal variations,while some parts were even relatively cool.This fact is supported by proxy data and could partly be explained by interdecadal changes in large-scale circulation.The effect of urbanization should have a minor contribution to the observed warming in China,although the estimates of such contributions for individual urban stations remain controversial.Further studies relevant to the present topic are discussed.
基金Supported by the National Basic Research Program of China (2020YFA0608904)National Natural Science Foundation of China(42275185, 41975115, and 41675094)。
文摘Model simulations show that drought may become more severe and widespread in the 21st century due to humaninduced global warming. However, the contributions from the key factors to the model-projected drought changes in China have not yet been examined in detail. We used the self-calibrated Palmer Drought Severity Index with Penman–Monteith potential evapotranspiration(scPDSIpm) based on 10 model simulations selected from the Coupled Model Intercomparison Project Phase 6(CMIP6). We investigated the contributions from precipitation(P), near-surface air temperature and specific humidity [Δ(T + q)], net surface longwave radiation(LW), net surface shortwave radiation(SW), and wind speed(WS) to the future changes in scPDSIpm, including the long-term mean, drying area,probability distribution function(PDF), drought frequency, and drought duration based on the scPDSIpm over China.Our results show that model-projected drying mainly occurs over southern China, whereas the dry areas under drought conditions increase from 20% to about 23%/30% under the two scenarios of the shared socioeconomic pathway(SSP2-4.5/SSP5-8.5) from 1985 to 2100, despite large uncertainties in individual projections partly due to internal variability. Drought frequency is projected to increases by about 10%–54%(15%–88%) under the SSP2-4.5(SSP5-8.5) scenario by the late 21st century, along with increases in drought duration. These changes are accompanied by a decrease in the mean scPDSIpm and flattening of the PDFs. The changes in drying over southern China are mainly attributed to surface warming and the increased surface vapor pressure deficit(VPD), with small contributions from changes in the surface net radiation. The changes in wetting over northern China mostly result from increased precipitation along with a small wetting effect from the changes in wind speed.
基金Supported by the National Natural Science Foundation of China(91437220 and 41405083)Project Fund from the Education Department of Hunan Province(14C0897)Huaihua University Double First-Class Initiative in Applied Characteristic Discipline of Control Science and Engineering.
文摘The accuracy of land surface hydrological simulations using an offline land surface model(LSM)depends largely on the quality of the atmospheric forcing data.In this study,Global Land Data Assimilation System(GLDAS)forcing data and the newly developed China Meteorological Administration Land Data Assimilation System(CLDAS)forcing data are used to drive the Noah LSM with multiple parameterizations(Noah-MP)and to explore how the newly developed CLDAS forcing data improve land surface hydrological simulations over China's Mainland.The monthly soil moisture(SM)and evapotranspiration(ET)simulations are then compared and evaluated against observations.The results show that the Noah-MP driven by the CLDAS forcing data(referred to as CLDASNoah-MP)significantly improves the simulations in most cases over China's Mainland and its eight river basins.CLDASNoahMP increases the correlation coefficient(R)values from 0.451 to 0.534 for the SM simulations at a depth range of 0–10 cm in China's Mainland,especially in the eastern monsoon area such as the Huang–Huai–Hai Plain,the southern Yangtze River basin,and the Zhujiang River basin.Moreover,the root-mean-square error is reduced from 0.078 to0.068 m3 m-3 for the SM simulations,and from 12.9 to 11.4 mm month-1 for the ET simulations over China's Mainland,especially in the southern Yangtze River basin and Zhujiang River basin.This study demonstrates that,by merging more in situ and remote sensing observations in regional atmospheric forcing data,offline LSM simulations can better simulate regional-scale land surface hydrological processes.
基金Supported by the National Key Research and Development Program of China(2018YFA0606002)National Natural Science Foundation of China(41875105 and 91547103)Startup Fund for Introduced Talents of Nanjing University of Information Science&Technology.
文摘Accurate surface air temperature(T2m)data are key to investigating eco-hydrological responses to global warming.Because of sparse in-situ observations,T2m datasets from atmospheric reanalysis or multi-source observation-based land data assimilation system(LDAS)are widely used in research over alpine regions such as the Tibetan Plateau(TP).It has been found that the warming rate of T2m over the TP accelerates during the global warming slowdown period of 1998–2013,which raises the question of whether the reanalysis or LDAS datasets can capture the warming feature.By evaluating two global LDASs,five global atmospheric reanalysis datasets,and a high-resolution dynamical downscaling simulation driven by one of the global reanalysis,we demonstrate that the LDASs and reanalysis datasets underestimate the warming trend over the TP by 27%–86%during 1998–2013.This is mainly caused by the underestimations of the increasing trends of surface downward radiation and nighttime total cloud amount over the southern and northern TP,respectively.Although GLDAS2.0,ERA5,and MERRA2 reduce biases of T2m simulation from their previous versions by 12%–94%,they do not show significant improvements in capturing the warming trend.The WRF dynamical downscaling dataset driven by ERA-Interim shows a great improvement,as it corrects the cooling trend in ERA-Interim to an observation-like warming trend over the southern TP.Our results indicate that more efforts are needed to reasonably simulate the warming features over the TP during the global warming slowdown period,and the WRF dynamical downscaling dataset provides more accurate T2m estimations than its driven global reanalysis dataset ERA-Interim for producing LDAS products over the TP.
基金Supported by the National Natural Science Foundation of China(41505075 and 41790473)National Key Research and Development Program of China(2016YFA0601802)
文摘This study investigates why the Arctic winter sea ice loss over the Barents–Kara Seas(BKS) is accelerated in the recent decade. We first divide 1979–2013 into two time periods: 1979–2000(P1) and 2001–13(P2), with a focus on P2 and the difference between P1 and P2. The results show that during P2, the rapid decline of the sea ice over the BKS is related not only to the high sea surface temperature(SST) over the BKS, but also to the increased frequency,duration, and quasi-stationarity of the Ural blocking(UB) events. Observational analysis reveals that during P2, the UB tends to become quasi stationary and its frequency tends to increase due to the weakening(strengthening) of zonal winds over the Eurasia(North Atlantic) when the surface air temperature(SAT) anomaly over the BKS is positive probably because of the high SST. Strong downward infrared(IR) radiation is seen to occur together with the quasi-stationary and persistent UB because of the accumulation of more water vapor over the BKS. Such downward IR favors the sea ice decline over the BKS, although the high SST over the BKS plays a major role. But for P1, the UB becomes westward traveling due to the opposite distribution of zonal winds relative to P2, resulting in weak downward IR over the BKS. This may lead to a weak decline of the sea ice over the BKS. Thus, it is likely that the rapid decline of the sea ice over the BKS during P2 is attributed to the joint effects of the high SST over the BKS and the quasi-stationary and long-lived UB events.
基金supported by the National Natural Science Foundation of China (No. 41175004)the China Meteorological Administration Special Public Welfare Research Fund (No. GYHY201106033)
文摘Currently, the Chinese central government is considering plans to build a trilateral economic sphere in the Bohai Bay area, including Beijing, Tianjin and Hebei(BTH), where haze pollution frequently occurs. To achieve sustainable development, it is necessary to understand the physical mechanism of the haze pollution there. Therefore, the pollutant transport mechanisms of a haze event over the BTH region from 23 to 24 September 2011 were studied using the Weather Research and Forecasting model and the FLEXible-PARTicle dispersion model to understand the effects of the local atmospheric circulations and atmospheric boundary layer structure. Results suggested that the penetration by sea-breeze could strengthen the vertical dispersion by lifting up the planetary boundary layer height(PBLH) and carry the local pollutants to the downstream areas; in the early night, two elevated pollution layers(EPLs) may be generated over the mountain areas: the pollutants in the upper EPL at the altitude of 2–2.5 km were favored to disperse by long-range transport, while the lower EPL at the altitude of 1 km may serve as a reservoir, and the pollutants there could be transported downward and contribute to the surface air pollution.The intensity of the sea–land and mountain–valley breeze circulations played an important role in the vertical transport and distribution of pollutants. It was also found that the diurnal evolution of the PBLH is important for the vertical dispersion of the pollutants,which is strongly affected by the local atmospheric circulations and the distribution of urban areas.
基金Supported by the National Key Research and Development Program of China(2018YFC1507700)National Natural Science Foundation of China(42175175)Jiangsu Collaborative Innovation Center for Climate Change。
文摘There have been considerable high-impact extreme events occurring around the world in the context of climate change.Event attribution studies,which seek to quantitatively answer whether and to what extent anthropogenic climate change has altered the characteristics-predominantly the probability and magnitude-of particular events,have been gaining increasing interest within the research community.This paper reviews the latest approaches used in event attribution studies through a new classification into three major categories according to how the event attribution question is framed-namely,the risk-based approach,the storyline approach,and the combined approach.Four approaches in the risk-based framing category and three in the storyline framing category are also reviewed in detail.The advantages and disadvantages of each approach are discussed.Particular attention is paid to the ability,suitability,and applicability of these approaches in attributing extreme events in China,a typical monsoonal region where climate models may not perform well.Most of these approaches are applicable in China,and some are more suitable for analyzing temperature events.There is no right or wrong among these approaches,but different approaches have different framings.The uncertainties in attribution results come from several aspects,including different categories of framing,different conditions in climate model approaches,different models,different definitions of the event,and different observational data used.Clarification of these aspects can help to understand the differences in attribution results from different studies.
基金Supported by the National Key Research and Development Program of China(2016YFA0600303 and 2018YFC1506506)。
文摘Accurate global land cover(GLC), as a key input for scientific communities, is important for a wide variety of applications. In order to understand the current suitability and limitation of GLC products, the discrepancy and pixellevel uncertainty in major GLC products in three epochs are assessed in this study by using an integrated uncertainty index(IUI) that combines the thematic uncertainty and local classification accuracy uncertainty. The results show that the overall spatial agreements(Ao values) between GLC products are lower than 58%, and the total areas of forests are very consistent in major GLC products, but significant differences are found in different forest classes.The misclassification among different forest classes and mosaic types can account for about 20% of the total disagreements. The mean IUI almost reaches 0.5, and high uncertainty mostly occurs in transition zones and heterogeneous areas across the world. Further efforts are needed to make in the land cover classifications in areas with high uncertainty. Designing a classification scheme for climate models, with explicit definitions of land cover classes in the threshold of common attributes, is urgently needed. Information of the pixel-level uncertainty in major GLC products not only give important implications for the specific application, but also provide a quite important basis for land cover fusion.