The multi-element components of low alloy steel were quantified by using laser-induced breakdown spectroscopy (LIBS) in deep UV. The Nd:YAG pulsed laser was used to produce plasma. The spectrum was simultaneously obta...The multi-element components of low alloy steel were quantified by using laser-induced breakdown spectroscopy (LIBS) in deep UV. The Nd:YAG pulsed laser was used to produce plasma. The spectrum was simultaneously obtained by deep UV spectrometer. This paper studied the influence of experiment parameters on LIBS spectral intensity, such as delay, energy of laser, and the distance between the focusing lens and the surface of the sample. With the optimal expe- riment parameters, the characteristic lines of C, Ni, Si, Cr and Cu contained in low alloy steel were selected for quantit- ative analysis and the calibration curves of these elements were obtained. The linear correlation coefficient was good. Using the calibration curves to quantitative analysis for the sample 05-d, and the relative error of analytical results is less than 10% for most elements.展开更多
The Laser Induced Breakdown Spectroscopy (LIBS) is a fast, non-contact, no sample preparation analytic technology;it is very suitable for on-line analysis of alloy composition. In the copper smelting industry, analysi...The Laser Induced Breakdown Spectroscopy (LIBS) is a fast, non-contact, no sample preparation analytic technology;it is very suitable for on-line analysis of alloy composition. In the copper smelting industry, analysis and control of the copper alloy concentration affect the quality of the products greatly, so LIBS is an efficient quantitative analysis tech- nology in the copper smelting industry. But for the lead brass, the components of Pb, Al and Ni elements are very low and the atomic emission lines are easily submerged under copper complex characteristic spectral lines because of the matrix effects. So it is difficult to get the online quantitative result of these important elements. In this paper, both the partial least squares (PLS) method and the calibration curve (CC) method are used to quantitatively analyze the laser induced breakdown spectroscopy data which is obtained from the standard lead brass alloy samples. Both the major and trace elements were quantitatively analyzed. By comparing the two results of the different calibration method, some useful results were obtained: both for major and trace elements, the PLS method was better than the CC method in quantitative analysis. And the regression coefficient of PLS method is compared with the original spectral data with background interference to explain the advantage of the PLS method in the LIBS quantitative analysis. Results proved that the PLS method used in laser induced breakdown spectroscopy was suitable for simultaneous quantitative analysis of different content elements in copper smelting industry.展开更多
A self-built double-pulse remote Laser-Induced Breakdown Spectroscopy system in a collinear configuration was used to?investigate?the magnesium?alloys. The enhancement of the intensity was observed, about 4.7 times co...A self-built double-pulse remote Laser-Induced Breakdown Spectroscopy system in a collinear configuration was used to?investigate?the magnesium?alloys. The enhancement of the intensity was observed, about 4.7 times compared with single pulse LIBS. The peak intensities of line Y II 366.4 nm and Zr I 468.7 nm were used in the calibration curves, and the correlation coefficients were 0.9998 and 0.9547 respectively.展开更多
文摘The multi-element components of low alloy steel were quantified by using laser-induced breakdown spectroscopy (LIBS) in deep UV. The Nd:YAG pulsed laser was used to produce plasma. The spectrum was simultaneously obtained by deep UV spectrometer. This paper studied the influence of experiment parameters on LIBS spectral intensity, such as delay, energy of laser, and the distance between the focusing lens and the surface of the sample. With the optimal expe- riment parameters, the characteristic lines of C, Ni, Si, Cr and Cu contained in low alloy steel were selected for quantit- ative analysis and the calibration curves of these elements were obtained. The linear correlation coefficient was good. Using the calibration curves to quantitative analysis for the sample 05-d, and the relative error of analytical results is less than 10% for most elements.
文摘The Laser Induced Breakdown Spectroscopy (LIBS) is a fast, non-contact, no sample preparation analytic technology;it is very suitable for on-line analysis of alloy composition. In the copper smelting industry, analysis and control of the copper alloy concentration affect the quality of the products greatly, so LIBS is an efficient quantitative analysis tech- nology in the copper smelting industry. But for the lead brass, the components of Pb, Al and Ni elements are very low and the atomic emission lines are easily submerged under copper complex characteristic spectral lines because of the matrix effects. So it is difficult to get the online quantitative result of these important elements. In this paper, both the partial least squares (PLS) method and the calibration curve (CC) method are used to quantitatively analyze the laser induced breakdown spectroscopy data which is obtained from the standard lead brass alloy samples. Both the major and trace elements were quantitatively analyzed. By comparing the two results of the different calibration method, some useful results were obtained: both for major and trace elements, the PLS method was better than the CC method in quantitative analysis. And the regression coefficient of PLS method is compared with the original spectral data with background interference to explain the advantage of the PLS method in the LIBS quantitative analysis. Results proved that the PLS method used in laser induced breakdown spectroscopy was suitable for simultaneous quantitative analysis of different content elements in copper smelting industry.
文摘A self-built double-pulse remote Laser-Induced Breakdown Spectroscopy system in a collinear configuration was used to?investigate?the magnesium?alloys. The enhancement of the intensity was observed, about 4.7 times compared with single pulse LIBS. The peak intensities of line Y II 366.4 nm and Zr I 468.7 nm were used in the calibration curves, and the correlation coefficients were 0.9998 and 0.9547 respectively.