期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Meshless Method for Analysis of Permeable Breakwaters in the Proximity of A Vertical Wall 被引量:7
1
作者 Nadji CHIOUKH Karim OUAZZANE +2 位作者 Yal??n YüKSEL Benameur HAMOUDI Esin ?EVIK 《China Ocean Engineering》 SCIE EI CSCD 2019年第2期148-159,共12页
In the present work, the improved version of the meshless singular boundary method(ISBM) is developed for analyzing the performance of bottom standing submerged permeable breakwaters in regular normally incident waves... In the present work, the improved version of the meshless singular boundary method(ISBM) is developed for analyzing the performance of bottom standing submerged permeable breakwaters in regular normally incident waves and in the proximity of a vertical wall. Both single and dual prismatic breakwaters of rectangular and trapezoidal forms are examined. The physical problem is cast in terms of the Laplace equation governing an irrotational flow and incompressible fluid motion with appropriate mixed type boundary conditions, and solved numerically using the ISBM. To model the permeability of the breakwaters fully absorbing boundary conditions are assumed. Numerical results are presented in terms of hydrodynamic quantities of the reflection coefficients. These are firstly validated against the results of a multi-domain boundary element method(BEM) developed independently for a previous study. The agreement between the results of the two methods is excellent. The coefficients of reflection are then computed and discussed for a variety of structural conditions including the breakwaters height, width, spacing, and absorbing permeability. Effects of the proximity of the vertical plane wall are also investigated. The breakwater's width is found to have only marginal effects compared with its height. Permeability tends to decrease the minimum reflections. These coefficients show periodic variations with the spacing relative to the wavelength. Trapezoidal breakwaters are found to be more cost-effective than the rectangular breakwaters. Dual breakwater systems are confirmed to perform much better than single structures. 展开更多
关键词 MESHLESS improved SINGULAR boundary method REGULAR normal waves rectangular and trapezoidal BREAKWATERS permeability vertical wall reflection
在线阅读 下载PDF
Meshless Method with Domain Decomposition for Submerged Porous Breakwaters in Waves
2
作者 CHIOUKH Nadji YÜKSEL Yalçın 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第6期1325-1340,共16页
Based on the improved version of the meshless singular boundary method(ISBM)in multi domain(MD),a numerical method is proposed in this paper to study the interaction of submerged permeable breakwaters and regular wave... Based on the improved version of the meshless singular boundary method(ISBM)in multi domain(MD),a numerical method is proposed in this paper to study the interaction of submerged permeable breakwaters and regular waves at normal incidence.To account for fluid flow inside the porous breakwaters,the conventional model of Sollitt and Cross for porous media is adopted.Both single and dual trapezoidal breakwaters are examined.The physical problem is formulated in the context of the linear potential wave theory.The domain decomposition method(DDM)is employed,in which the full computational domain is decomposed into separate domains,that is,the fluid domain and the domains of the breakwaters.Respectively,appropriate mixed type boundary and continuity conditions are applied for each subdomain and at the interfaces between domains.The solution is approximated in each subdomain by the ISBM.The discretized algebraic equations are combined,resulting in an overdetermined full system that is solved using a least-square solution procedure.The numerical results are presented in terms of the hydrodynamic quantities of reflection,transmission,and wave-energy dissipation.The relevance of the results of the present numerical procedure is first validated against data of previous studies,and then selected computations are discussed for various structural conditions.The proposed method is demonstrated to be highly accurate and computationally efficient. 展开更多
关键词 meshless method domain decomposition regular waves BREAKWATERS POROSITY reflection transmission DISSIPATION coastal environment
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部