期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Interfacial Mo-S bond modulated S-scheme Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)heterojunction for boosted photocatalytic removal of emerging organic contaminants
1
作者 Shijie Li Changjun You +3 位作者 Fang Yang Guijie Liang Chunqiang Zhuang Xin Li 《Chinese Journal of Catalysis》 2025年第1期259-271,共13页
Inefficient photo-carrier separation and sluggish photoreaction dynamics appreciably undermine the photocatalytic decontamination efficacy of photocatalysts.Herein,an S-scheme Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)heterojunc... Inefficient photo-carrier separation and sluggish photoreaction dynamics appreciably undermine the photocatalytic decontamination efficacy of photocatalysts.Herein,an S-scheme Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)heterojunction with interfacial Mo-S chemical bond is designed as an efficient photocatalyst.In this integrated photosystem,Bi2MoO6 and Mn_(0.5)Cd_(0.5)S function as oxidation and reduction centers of Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)microspheres,respectively.Importantly,the unique charge transfer mechanism in the chemically bonded S-scheme heterojunction with Mo-S bond as atom-scale charge transport highway effectively inhibits the photocorrosion of Mn_(0.5)Cd_(0.5)S and the recombination of photo-generated electron-hole pairs,endowing Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)photocatalyst with excellent photocatalytic decontamination performance and stability.Besides,integration of Mn_(0.5)Cd_(0.5)S nanocrystals into Bi2MoO6 improves hydrophilicity,conducive to the photoreactions.Strikingly,compared with Mn_(0.5)Cd_(0.5)S and Bi2MoO6,the Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)unveils much augmented photoactivity in tetracycline eradication,among which Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)-2 possesses the highest activity with the rate constant up to 0.0323 min-1,prominently outperforming other counterparts.This research offers a chemical bonding engineering combining with S-scheme heterojunction strategy for constructing extraordinary photocatalysts for environmental purification. 展开更多
关键词 Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6) Interfacialchemicalbond S-scheme heterojunction Emerging organic contaminants Internalelectricfield Photocatalysis
在线阅读 下载PDF
Compositional engineering of HKUST-1/sulfidized NiMn-LDH on functionalized MWCNTs as remarkable bifunctional electrocatalysts for water splitting 被引量:2
2
作者 Mengshan Chen Reza Abazari +6 位作者 Soheila Sanati Jing Chen Mingyuzhi Sun Cunhong Bai Alexander M.Kirillov Yingtang Zhou Guangzhi Hu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期1-20,共20页
Water-splitting reactions such as the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)typically require expensive noble metal-based electrocatalysts.This has motivated researchers to develop nove... Water-splitting reactions such as the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)typically require expensive noble metal-based electrocatalysts.This has motivated researchers to develop novel,cost-effective electrocatalytic systems.In this study,a new multicomponent nanocomposite was assembled by combining functionalized multiwalled carbon nanotubes,a Cu-based metal–organic framework(MOF)(HKUST-1 or HK),and a sulfidized NiMn-layered double hydroxide(NiMn-S).The resulting nanocomposite,abbreviated as MW/HK/NiMn-S,features a unique architecture,high porosity,numerous electroactive Cu/Ni/Mn sites,fast charge transfer,excellent structural stability,and conductivity.At a current density of 10 mA cm-2,this dual-function electrocatalyst shows remarkable performance,with ultralow overpotential values of 163 mV(OER)or 73 mV(HER),as well as low Tafel slopes(57 and 75 mV dec-1,respectively).Additionally,its high turnover frequency values(4.43 s-1 for OER;3.96 s-1 for HER)are significantly superior to those of standard noble metal-based Pt/C and IrO2 systems.The synergistic effect of the nanocomposite's different components is responsible for its enhanced electrocatalytic performance.A density functional theory study revealed that the multi-interface and multicomponent heterostructure contribute to increased electrical conductivity and decreased energy barrier,resulting in superior electrocatalytic HER/OER activity.This study presents a novel vision for designing advanced electrocatalysts with superior performance in water splitting.Various composites have been utilized in water-splitting applications.This study investigates the use of the MW/HK/NiMn-S electrocatalyst for water splitting for the first time to indicate the synergistic effect between carbon-based materials along with layered double hydroxide compounds and porous compounds of MOF.The unique features of each component in this composite can be an interesting topic in the field of water splitting. 展开更多
关键词 bifunctional electrocatalyst electroactive sites MULTICOMPONENT synergic effect water splitting
在线阅读 下载PDF
Chemically bonded Mn_(0.5)Cd_(0.5)S/BiOBr S-scheme photocatalyst with rich oxygen vacancies for improved photocatalytic decontamination performance 被引量:2
3
作者 Shijie Li Changjun You +3 位作者 Ke Rong Chunqiang Zhuang Xiaobo Chen Bin Zhang 《Advanced Powder Materials》 2024年第3期12-22,共11页
Devising exceptional S-scheme heterojunction photocatalysts utilized in annihilating pharmaceuticals and chromium contamination is significant for addressing the problem of global water pollution.In this work,a chemic... Devising exceptional S-scheme heterojunction photocatalysts utilized in annihilating pharmaceuticals and chromium contamination is significant for addressing the problem of global water pollution.In this work,a chemically bonded Mn0.5Cd_(0.5)S/BiOBr S-scheme heterostructure with oxygen vacancies is ingeniously developed through a facile in-situ solvothermal synthesis.The designed Mn0.5Cd_(0.5)S/BiOBr heterojunction exhibits eminently reinforced photo-activity for destruction of tetracycline hydrochloride and Cr(VI)as compared with its individual components.This substantial photo-redox performance amelioration is benefitted from the creation of an intense internal electric field(IEF)via supplying powerful driving force and migration highway by interfacial chemical bond to foster the S-scheme electron/hole disintegration.More intriguingly,the IEF at the hetero-interface drives the fast consumption of the photo-induced holes in Mn0.5Cd_(0.5)S by the photoelectrons from BiOBr,profoundly boosting the enrichment of active photo-carriers and sparing the photo-corrosion of Mn0.5Cd_(0.5)S.Furthermore,Mn0.5Cd_(0.5)S/BiOBr with exceptional anti-interference property can work efficiently in real water matrices.Multiple uses of the recycled Mn0⋅5Cd0⋅5S/BiOBr evidence its prominent robustness and stability.This achievement indicates the vast potential of chemically bonded S-scheme photosystems with structural defects in the design of photo-responsive materials for effective wastewater treatment. 展开更多
关键词 Mn_(0.5)Cd_(0⋅5)S/BiOBr Chemically bonded S-Scheme Internal electric field Oxygen vacancies Antibiotic removal Photocatalysis
在线阅读 下载PDF
Facet effects on bimetallic ZnSn hydroxide microcrystals for selective electrochemical CO_(2)reduction
4
作者 Liu Han Cheng-wei Wang +3 位作者 Shan-shan Luo Ying-tang Zhou Bing Li Ming Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1314-1320,共7页
Employing crystal facets to regulate the catalytic properties in electrocatalytic carbon dioxide reduction reaction(eCO_(2)RR)has been well demonstrated on electrocatalysts containing single metals but rarely explored... Employing crystal facets to regulate the catalytic properties in electrocatalytic carbon dioxide reduction reaction(eCO_(2)RR)has been well demonstrated on electrocatalysts containing single metals but rarely explored for bimetallic systems.Here,we synthesize ZnSn(OH)_(6)(ZSO)microcrystals(MCs)with distinct facets and investigate the facet effects in eCO_(2)RR.Electrochemical studies and in situ Fourier Transform Infrared Spectroscopy(in situ-FTIR)reveal that ZSO MCs produce mainly C1 products of HCOOH and CO.The{111}facet of the ZSO MCS exhibits higher selectivity and faradaic efficiency(FE)than that of the{100}facet over a wide range of potentials(-0.9 V∼-1.3 V versus RHE).Density Functional Theory(DFT)calculations elucidate that the{111}facet is favorable to the adsorption/activation of CO_(2)molecules,the formation of intermediate in the rate-determining step,and the desorption of C1 products of CO and HCOOH molecules. 展开更多
关键词 ZnSn(OH)_(6) Crystal facets Electrochemical carbon dioxide reduction C1 product Density functional theory
在线阅读 下载PDF
Reversed charge transfer induced by nickel in Fe-Ni/Mo_(2)C@nitrogen-doped carbon nanobox for promoted reversible oxygen electrocatalysis
5
作者 Zhicheng Nie Lei Zhang +4 位作者 Qiliang Zhu Zhifan Ke Yingtang Zhou Thomas Wågberg Guangzhi Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期202-212,I0005,共12页
The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption... The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes. 展开更多
关键词 Metal-support interaction Charge transfer reversal Oxygen reduction reaction Oxygen evolution reaction Zinc-air battery
在线阅读 下载PDF
Bound-state electrons synergy over photochromic high-crystalline C_(3)N_(5) nanosheets in enhancing charge separation for photocatalytic H_(2) production
6
作者 Yu Shen Xin Du +7 位作者 Yuxing Shi Loic Jiresse Nguetsa Kuate Zhouze Chen Cheng Zhu Lei Tan Feng Guo Shijie Li Weilong Shi 《Advanced Powder Materials》 2024年第4期92-102,共11页
Solar-driven water splitting for photocatalytic hydrogen evolution is considered a highly promising and costeffective solution to achieve a stable renewable energy supply.However,the sluggish kinetics of electron-hole... Solar-driven water splitting for photocatalytic hydrogen evolution is considered a highly promising and costeffective solution to achieve a stable renewable energy supply.However,the sluggish kinetics of electron-hole pairs’separation poses challenges in attaining satisfactory hydrogen production efficiency.Herein,we synthesized the exceptional performance of highly crystalline C_(3)N_(5)(HC–C_(3)N_(5))nanosheet as a photocatalyst,demonstrating a remarkable hydrogen evolution rate of 3.01 mmol h^(-1)g^(-1),which surpasses that of bulk C_(3)N_(5)(B–C_(3)N_(5))by a factor of 3.27.Experimental and theoretical analyses reveal that HC-C_(3)N_(5)nanosheets exhibit intriguing macroscopic photoinduced color changes,effectively broadening the absorption spectrum and significantly enhancing the generation of excitons.Besides,the cyano groups in HC-C_(3)N_(5)efficiently captures and converts photoexcited electrons into bound states,thereby prolonging their lifetimes and effectively separating electrons and holes into catalytically active regions.This research provides valuable insights into the establishment of bound electronic states for developing efficient photocatalysts. 展开更多
关键词 Bound-state electrons PHOTOCHROMIC C_(3)N_(5) High-crystalline Photocatalytic H2 production
在线阅读 下载PDF
S-Scheme photocatalyst TaON/Bi_(2)WO_(6) nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI):Intermediate eco-toxicity analysis and mechanistic insights 被引量:12
7
作者 Shijie Li Mingjie Cai +3 位作者 Yanping Liu Chunchun Wang Kangle Lv Xiaobo Chen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第10期2652-2664,共13页
Enlightened by natural photosynthesis,developing efficient S-scheme heterojunction photocatalysts for deleterious pollutant removal is of prime importance to restore environment.Herein,novel TaON/Bi_(2)WO_(6) S-scheme... Enlightened by natural photosynthesis,developing efficient S-scheme heterojunction photocatalysts for deleterious pollutant removal is of prime importance to restore environment.Herein,novel TaON/Bi_(2)WO_(6) S-scheme heterojunction nanofibers were designed and developed by in-situ growing Bi_(2)WO_(6) nanosheets with oxygen vacancies(OVs)on TaON nanofibers.Thanks to the efficiently spatial charge disassociation and preserved great redox power by the unique S-scheme mechanism and OVs,as well as firmly interfacial contact by the core-shell 1D/2D fibrous hetero-structure via the in-situ growth,the optimized TaON/Bi_(2)WO_(6) heterojunction unveils exceptional visible-light photocatalytic property for abatement of tetracycline(TC),levofloxacin(LEV),and Cr(Ⅵ),respectively by 2.8-fold,1.0-fold,and 1.9-fold enhancement compared to the bare Bi_(2)WO_(6),while maintaining satisfactory stability.Furthermore,the systematic photoreaction tests indicate Ta-ON/Bi_(2)WO_(6) has the high practicality in the elimination of pollutants in aquatic environment.The degradation pathway of tetracycline and intermediate eco-toxicity were determined based on HPLC–MS combined with QSAR calculation,and a possible photocatalytic mechanism was elucidated.This work provides a guideline for designing high-performance TaON-based S-scheme photocatalysts with defects for environment protection. 展开更多
关键词 TaON/Bi_(2)WO_(6) S-Scheme heterojunction Electrospinning Oxygen vacancy Antibiotic degradation Cr(Ⅵ)reduction
在线阅读 下载PDF
Boron modulating electronic structure of FeN4C to initiate high-efficiency oxygen reduction reaction and high-performance zinc-air battery 被引量:7
8
作者 Xue Zhao Xue Li +7 位作者 Zenghui Bi Yuwen Wang Haibo Zhang Xiaohai Zhou Quan Wang Yingtang Zhou Huaisheng Wang Guangzhi Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期514-524,I0014,共12页
The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−... The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−)and 1,10-phenanthroline-iron complexes were introduced into the porous metal-organic framework by impregnation method,and further annealing treatment achieved the successful anchoring of single-atom-Fe in B-doped CN Matrix(FeN4CB).The ORR activity of FeN4CB is comparable to the widely used commercial 20 wt%Pt/C.Where the half-wave potential(E_(1/2))in alkaline medium up to 0.84 V,and even in the face of challenging ORR in acidic medium,the E_(1/2)of ORR driven by FeN4CB is still as high as 0.81 V.When FeN4CB was used as air cathode,the open circuit voltage of Zn-air battery reaches 1.435 V,and the power density and specific capacity are as high as 177 mW cm^(−2)and 800 mAh g_(Zn)^(−1)(theoretical value:820 mAh g_(Zn)^(−1)),respectively.The dazzling point of FeN4CB also appears in the high ORR stability,whether in alkaline or acidic media,E_(1/2)and limiting current density are still close to the initial value after 5000 times cycles.After continuously running the charge-discharge test for 220 h,the charge voltage and discharge voltage of the rechargeable zinc-air battery with FeN4CB as the air cathode maintained the initial state.Density functional theory calculations reveals that introducing B atom to Fe–N4–C can adjust the electronic structure to easily break O=O bond and significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity. 展开更多
关键词 Single-atom Fe B-doped CN Oxygen reduction reaction Zn-air battery Electronic modulation
在线阅读 下载PDF
A high‐performance transition‐metal phosphide electrocatalyst for converting solar energy into hydrogen at 19.6% STH efficiency 被引量:5
9
作者 Hua Zhang Abuduwayiti Aierke +5 位作者 Yingtang Zhou Zitao Ni Ligang Feng Anran Chen Thomas Wågberg Guangzhi Hu 《Carbon Energy》 SCIE CAS CSCD 2023年第1期206-217,共12页
The construction of high-efficiency and low-cost non-noble metal bifunctional electrocatalysts for water electrolysis is crucial for commercial large-scale application of hydrogen energy.Here,we report a novel strateg... The construction of high-efficiency and low-cost non-noble metal bifunctional electrocatalysts for water electrolysis is crucial for commercial large-scale application of hydrogen energy.Here,we report a novel strategy with erbiumdoped NiCoP nanowire arrays in situ grown on conductive nickel foam(Er-NiCoP/NF).Significantly,the developed electrode shows exceptional bifunctional catalytic activity,which only requires overpotentials of 46 and 225 mV to afford a current density of 10 mAcm^(−2) for the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER),respectively.Density functional theory calculations reveal that the appropriate Er incorporation into the NiCoP lattice can significantly modulate the electronic structure with the d-band centers of Ni and Co atoms by shifting to lower energies with respect to the Fermi level,and optimize the Gibbs free energies of HER/OER intermediates,thereby accelerating water-splitting kinetics.When assembled as a solar-driven overall water-splitting electrolyzer,the as-prepared electrode shows a high and stable solar-to-hydrogen efficiency of 19.6%,indicating its potential for practical storage of intermittent energy. 展开更多
关键词 bifunctional electrocatalysts electronic regulation hydrogen evolution reaction oxygen evolution reaction solar-to-hydrogen efficiency
在线阅读 下载PDF
Numerical Simulation of Dynamic Response of A Net Cage for Flatfish in Waves 被引量:3
10
作者 桂福坤 赵云鹏 +1 位作者 许条建 关长涛 《China Ocean Engineering》 SCIE EI CSCD 2014年第1期43-56,共14页
A numerical model of flatfish cage is built based on the lumped mass method and the principle of rigid body kinematics. To validate the numerical model, a series of physical model tests are conducted in the wave flume... A numerical model of flatfish cage is built based on the lumped mass method and the principle of rigid body kinematics. To validate the numerical model, a series of physical model tests are conducted in the wave flume. The numerical results correspond well with the data sets from physical model test. The effect of weight of bottom frame, height of fish net and net shape on motion responses of fish cage and tension force on mooring lines is then analyzed. The results indicate that the vertical displacements of float collar and bottom frame decrease with the increase in the weight of bottom frame; the maximum tension force on mooring lines increases with the increasing weight of bottom frame. The inclination angles of float collar and bottom frame decrease with the increasing net height; the maximum tension force increases obviously with the increase of net height. 展开更多
关键词 flatfish cage motion response numerical simulation physical model test
在线阅读 下载PDF
Heterostructured bimetallic phosphide nanowire arrays with latticetorsion interfaces for efficient overall water splitting 被引量:2
11
作者 Hua Zhang Hongyi Li +7 位作者 Yintang Zhou Fang Tan Ruijie Dai Xijun Liu Guangzhi Hu Laiming Jiang Anran Chen Renbing Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期420-427,I0011,共9页
Designing cost-effective and high-efficiency electrocatalysts is critical to the water splitting performance during hydrogen generation.Herein,we have developed Fe_(2)P-Co_(2)P heterostructure nanowire arrays with exc... Designing cost-effective and high-efficiency electrocatalysts is critical to the water splitting performance during hydrogen generation.Herein,we have developed Fe_(2)P-Co_(2)P heterostructure nanowire arrays with excellent lattice torsions and grain boundaries for highly efficient water splitting.According to the microstructural investigations and theoretical calculations,the lattice torsion interface not only contributes to the exposure of more active sites but also effectively tunes the adsorption energy of hydrogen/oxygen intermediates via the accumulation of charge redistribution.As a result,the Fe_(2)P-Co_(2)P heterostructure nanowire array exhibits exceptional bifunctional catalytic activity with overpotentials of 65 and 198 mV at 10 mA cm^(-2) for hydrogen and oxygen evolution reactions,respectively.Moreover,the Fe_(2)P-Co_(2)P/NF-assembled electrolyzer can deliver 10 mA cm^(-2) at an ultralow voltage of1.51 V while resulting in a high solar-to-hydrogen conversion efficiency of 19.8%in the solar-driven water electrolysis cell. 展开更多
关键词 Transition metal phosphide Lattice torsion Heterogeneous interfaces Water splitting Theoretical calculation
在线阅读 下载PDF
Profile and development of microsatellite primers for Acanthogobius ommaturus based on high-throughput sequencing technology 被引量:1
12
作者 SONG Chenyu FENG Ziyi +4 位作者 LI Chunhou SUN Zhicheng GAO Tianxiang SONG Na LIU Lu 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第6期1880-1890,共11页
Acanthogobius ommaturus,a fish species of the Family Gobiidae,is a marine commercial fish perched on the bottom of seawater.In this study,Illumina high-throughput sequencing technology was applied to obtain the candid... Acanthogobius ommaturus,a fish species of the Family Gobiidae,is a marine commercial fish perched on the bottom of seawater.In this study,Illumina high-throughput sequencing technology was applied to obtain the candidate microsatellite markers of A.ommaturus.A total of 4746 microsatellite-rich fragments were found,of which 4542 microsatellites are with primer fragments,containing 971 dinucleotide sequences,2643 trinucleotide sequences,569 tetranucleotide sequences,406 pentanucleotide sequences,and 212 hexanucleotide sequences.Based on the results of high-throughput sequencing,a total of 141 pairs of the microsatellite primers were designed and screened.And then 24 polymorphic primers were finally obtained by polyacrylamide gel electrophoresis.In total,271 alleles were detected in the 24 pairs of primers.The number of alleles for different primers ranged from 5 to 19.The average number of effective alleles(Na)was 11.292;the average observed heterozygosity(Ho)of the 24 pairs of primers was 0.665,the average expected heterozygosity(He)was 0.880,and the average polymorphic information content was 0.846.All sites were highly polymorphic(PIC>0.50). 展开更多
关键词 MICROSATELLITE Acanthogobius ommaturus high-throughput sequencing polymorphic sites
在线阅读 下载PDF
Constructing Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction 被引量:10
13
作者 Shijie Li Mingjie Cai +3 位作者 Yanping Liu Chunchun Wang Ruyu Yan Xiaobo Chen 《Advanced Powder Materials》 2023年第1期43-54,共12页
The development of distinguished photocatalysts with high photo-carrier disassociation and photo-redox power for efficient elimination of pollutants in water is of great significance but still a grand challenge.Herein... The development of distinguished photocatalysts with high photo-carrier disassociation and photo-redox power for efficient elimination of pollutants in water is of great significance but still a grand challenge.Herein,a novel Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) S-scheme heterojunction was built up by integrating Cd0.5Zn0.5S nanoparticles on Bi2WO6 microspheres via a simple route.The S-scheme charge transfer mode substantially boosts the high-energetic electrons/holes spatial detachment and conservation on the Cd_(0.5)Zn_(0.5)S(reduction)and Bi_(2)WO_(6)(oxidation),respectively,as well as effectively suppresses the photo-corrosion of Cd_(0.5)Zn_(0.5)S,rendering Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) photocatalysts with superior redox ability.The optimal Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) heterojunction achieves exceptional visible-light-driven photocatalytic tetracycline degradation and Cr(VI)reduction efficiency,3.2(1.9)-time and 33.6(1.6)-time stronger than that of neat Bi_(2)WO_(6)(Cd_(0.5)Zn_(0.5)S),while retaining the superior stability and reusability.Quenching test,mass spectrometry analysis,and toxicity assessment based on Quantitative Structure Activity Relationships.calculation unravel the prime active substances,intermediates,photo-degradation pathway,and intermediate eco-toxicity in photocatalytic process.This research not only offers a potential photocatalyst for aquatic environment protection but also promotes the exploration of novel and powerful chalcogenides-based S-scheme photocatalysts for environment protection. 展开更多
关键词 Cd_(0.5)Zn_(0.5)S/Bi_(2)WO_(6) S-scheme heterojunction Antiphotocorrosion Cr(VI)reduction Antibiotic degradation Toxicity assessment
在线阅读 下载PDF
Population Genetic Analysis of Sillago nigrofasciata (Perciformes:Sillaginidae) Along the Coast of China by Sequencing Mitochondrial DNA Control Region
14
作者 ZHANG Xiaomeng GAO Tianxiang +3 位作者 YE Yingying SONG Na YU Zhengsen LIU Yong 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第3期707-716,共10页
Sillago nigrofasciata, a small to moderate size nearshore species, is newly found along the eastern and southern coasts of China. The present study is carried out in order to analyze the population genetics of the S. ... Sillago nigrofasciata, a small to moderate size nearshore species, is newly found along the eastern and southern coasts of China. The present study is carried out in order to analyze the population genetics of the S. nigrofasciata. The control region sequence of mitochondrial DNA revealing 73 haplotypes were obtained from 162 individuals collected at 8 locations along the coast of China. The whole S. nigrofasciata population along the coast of China showed a low nucleotide diversity(0.012) and a high population diversity(haplotype diversity)(0.943), and all the 8 local populations showed low nucleotide diversities(0.014 – 0.001), suggesting the protective measures are effective. The haplotypes of the 8 local populations were widely distributed in haplotype network diagram and neighbor-joining phylogenetic tree, while no branch associating with sampling locations was detected. Recent gene flow analysis showed asymmetric gene exchanges among local populations. The pairwise FST values and unweighted pair-group method with arithmetic mean(UPGMA) tree revealed a certain amount of genetic difference among local populations. Moreover, analysis of molecular variance(AMOVA) reflected genetic differences between hypothetical subdivision groups. Neutral test and mismatch distribution of pairwise nucleotide suggested S. nigrofasciata may have experienced recent population expansion events. The historical geographic events associating with ice age may be the main explanation to the heterogeneity among local populations with short geographic distances, and the homogeneity among local populations with long geographic distances. 展开更多
关键词 Sillago nigrofasciata Sillago sp. population genetics mitochondrial DNA control region coast of China
在线阅读 下载PDF
Transcriptome profiling and RXR gene family identification reveals the molecular mechanism of rapid aging after spawning of cuttlefish Sepiella japonica
15
作者 Zhenyu DONG Jiemei ZHAO +6 位作者 Feng GUO Shuangrui LIN Huai YANG Yingying YE Changfei CHI Hongfei LI Baoying GUO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期865-880,共16页
Sepiella japonica is a worldwide marine cuttlefish species of high economic value.S.japonica routinely modifying behaviors in reproductive life,such as rapid aging until death after spawning,has been recognized in art... Sepiella japonica is a worldwide marine cuttlefish species of high economic value.S.japonica routinely modifying behaviors in reproductive life,such as rapid aging until death after spawning,has been recognized in artificial breeding.However,reproductive behavior at the level of genes is rarely reported,thus,the research on the genetic basis of behavior,reproduction,and artificial breeding was limited.We applied RNA-seq in different stages of reproduction to investigate the reason of rapid aging after spawning,pre-maturity,pre-spawning after maturity,and post-spawning.The retinoid X receptor(RXR)gene family in S.japonica was identified,and 1343–1452 differentially expressed genes(DEGs)in all 3 stages of reproductive life were identified from pairwise m RNA comparisons.Furthermore,through the GO term and KEGG analysis,S.japonica could handle neuronal development and network formation before maturity and have a functional degradation of neural communication,signal transduction,vision,and gene expression after spawning.Eight Sj RXRαs have been identified and they played different roles in growth development or reproduction.Therefore,the regulation of several channels and receptors is the intrinsic molecular mechanism of rapid aging after spawning in S.japonica.This study revealed the survival strategy and provided fundamental data on the level of genes for understanding the reproductive behavior and the reproduction of S.japonica. 展开更多
关键词 Sepiella japonica RAN-seq retinoid X receptor(RXR)gene family rapid aging intrinsic molecular mechanism
在线阅读 下载PDF
Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn_(2)S_(4)/Bi_(2)O_(3) S-Scheme Heterojunction
16
作者 Linfeng Xiao Wanlu Ren +4 位作者 Shishi Shen Mengshan Chen Runhua Liao Yingtang Zhou Xibao Li 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第8期50-63,共14页
The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise.Nonetheless,the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on... The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise.Nonetheless,the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on photocatalysts present notable challenges.In this study,we have devised a straightforward hydrothermal method to synthesize Bi_(2)O_(3)(BO)derived from metal‐organic frameworks(MOFs),loaded with flower-like ZnIn_(2)S_(4)(ZIS).This approach substantially enhances water adsorption and surface catalytic reactions,resulting in a remarkable enhancement of photocatalytic activity.By employing triethanolamine(TEOA)as a sacrificial agent,the hydrogen evolution rate achieved with 15%(mass fraction)ZIS loading on BO reached an impressive value of 1610μmol∙h^(−1)∙g^(−1),marking a 6.34-fold increase compared to that observed for bare BO.Furthermore,through density functional theory(DFT)and ab initio molecular dynamics(AIMD)calculations,we have identified the reactions occurring at the ZIS/BO S-scheme heterojunction interface,including the identification of active sites for water adsorption and catalytic reactions.This study provides valuable insights into the development of high-performance composite photocatalytic materials with tailored electronic properties and wettability. 展开更多
关键词 S-scheme Hydrogen evolution WETTABILITY PHOTOCATALYSIS Electronic structure
在线阅读 下载PDF
P-tuned FeN_(2)binuclear sites for boosted CO_(2)electro-reduction
17
作者 Cao Guo Sanshuang Gao +5 位作者 Jun Li Menglin Zhou Abdukader Abdukayum Qingquan Kong Yingtang Zhou Guangzhi Hu 《Journal of Energy Chemistry》 2025年第2期816-824,I0018,共10页
The recycling of CO_(2)through electrochemical processes offers a promising solution for alleviating the greenhouse effect;however,the activation of CO_(2)and desorption of^(*)CO in electrocatalytic CO_(2)reduction(EC... The recycling of CO_(2)through electrochemical processes offers a promising solution for alleviating the greenhouse effect;however,the activation of CO_(2)and desorption of^(*)CO in electrocatalytic CO_(2)reduction(ECR)frequently encounter high energy barriers and competitive hydrogen evolution reactions(HERs),which are urgent problems that need to be addressed.In this study,a catalyst(P100-Fe-N/C)with homogeneous P-tuned FeN_(2)binuclear sites(N_(2)PFe-FePN_(2))was successfully synthesised,demonstrating satisfactory performance in the ECR to CO.P100-Fe-N/C attains a peak FECOof 98.01%and a normalized TOF of 664.7 h-1at-0.7 VRHE,surpassing the performance of the Fe binuclear catalyst without P and singleatoms catalysts.In the MEA cell,a FECOexceeding 90%can still be achieved.Density functional theory analysis indicates that the asymmetric coordination configuration induced by the incorporation of P facilitates a reduction in the system's energy.The modulation of P results in the d-band centre of the catalyst being positioned closer to the Fermi level,which facilitates the interaction of the catalyst with CO_(2),allowing more electrons to be injected into the CO_(2)molecule at the Fe binuclear sites and inhibiting the HER.The P-tuned FeN_(2)binuclear sites effectively lower the^(*)CO desorption barrier. 展开更多
关键词 Electrocatalysis Diatomic catalyst Heteroatom doping CO_(2)reduction reaction DFT calculation
在线阅读 下载PDF
Synergistic effect of Pd single atoms and clusters on the de/re-hydrogenation performance of MgH_(2)
18
作者 Nuo Xu Haoran Zhou +5 位作者 Mingqiang Zhang Yuchuan Ye Kaiwen Wang Yingtang Zhou Yunfeng Zhu Yao Zhang 《Journal of Materials Science & Technology》 2024年第24期49-62,共14页
Hydrogen storage plays a pivotal role in the hydrogen industry,yet its current status presents a bottle-neck.Diverse strategies have emerged in recent years to address this challenge.MgH_(2) has stood out as a promisi... Hydrogen storage plays a pivotal role in the hydrogen industry,yet its current status presents a bottle-neck.Diverse strategies have emerged in recent years to address this challenge.MgH_(2) has stood out as a promising solid-state hydrogen storage material due to its impressive gravimetric and volumetric hydrogen density,but its practical application is hampered by elevated thermal stability and sluggish kinetics.In this study,we introduce a solution by synthesizing Pd metallene through a one-pot solvothermal method,revealing a distinctive highly curved lamellar structure with a thickness of around 1.6 nm.Incorporating this Pd metallene into MgH_(2) results in a composite system wherein the starting dehydrogenation temperature is significantly lowered to 439 K and complete dehydrogenation occurs at 583 K,releasing 6.14 wt.%hydrogen.The activation energy of dehydrogenation for MgH_(2) was reduced from 170.4 kJ mol^(-1) to 79.85 kJ mol^(-1) after Pd metallene decoration.The enthalpy of dehydrogenation of the MgH_(2)-10 wt.%Pd sample was calculated to be 73 kJ mol^(-1) H_(2)^(-1) and decreased by 4.4 kJ mol^(-1) H_(2)^(-1) from that of dehydrogenation of pure MgH_(2)(77.4 kJ mol^(-1) H_(2)-1).Theoretical calculations show that the average formation energy and average adsorption energy of hydrogen vacancies can be significantly reduced in the presence of both Pd clusters and Pd single atoms on the surface of MgH_(2)/Mg,respectively.It suggests that the synergistic effect of in situ formed Pd single atoms and clusters significantly improves the hydrogenation and dehydrogenation kinetics.The identified active sites in this study hold potential as references for forthcoming multi-sized active site catalysts,underscoring a significant advancement toward resolving hydrogen storage limitations. 展开更多
关键词 MgH_(2) Metallene Single atoms Clusters Hydrogen storage
原文传递
Identification of Species in Genus Platycephalus from Seas of China 被引量:1
19
作者 CHEN Zhi SONG Na +3 位作者 ZOU Jianwei QIN Yan MA Lai GAO Tianxiang 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第2期417-427,共11页
Platycephalus in Chinese sea area has a high commercial value.However,there were mis-identifications in previous records.In this study,we fully distinguished and diagnosed all five species,Platycephalus indicus,P.cult... Platycephalus in Chinese sea area has a high commercial value.However,there were mis-identifications in previous records.In this study,we fully distinguished and diagnosed all five species,Platycephalus indicus,P.cultellatus,Platycephalus sp.,Platycephalus sp.1 and Platycephalus sp.2.The results revealed that P.cultellatus was overlooked by previous ichthyologists.Platycephalus sp.1 was misidentified as P.indicus in reality,and Platycephalus sp.2 only existed in the seas of Japan.Furthermore,morphological,especially phylogenetic analysis indicated that Platycephalus sp.from South China Sea differs from all former known species,which might be a new species.We identified all Platycephalus species in China seas for the first time,which will contribute to local species identification,biodiversity conservation and sustainable exploitation of Platycephalus species. 展开更多
关键词 Platycephalus seas of China new species TAXONOMY PHYLOGENETICS
在线阅读 下载PDF
A plasmonic S-scheme Au/MIL-101(Fe)/BiOBr photocatalyst for efficient synchronous decontamination of Cr(VI) and norfloxacin antibiotic 被引量:4
20
作者 Shijie Li Kexin Dong +2 位作者 Mingjie Cai Xinyu Li Xiaobo Chen 《eScience》 2024年第2期80-91,共12页
Present photocatalysts for the synchronous cleanup of pharmaceuticals and heavy metals have several drawbacks,including inadequate reactive sites,inefficient electron–hole disassociation,and insufficient oxidation an... Present photocatalysts for the synchronous cleanup of pharmaceuticals and heavy metals have several drawbacks,including inadequate reactive sites,inefficient electron–hole disassociation,and insufficient oxidation and reduction power.In this research,we sought to address these issues by using a facile solvothermal-photoreduction route to develop an innovative plasmonic S-scheme heterojunction,Au/MIL-101(Fe)/BiOBr.The screened-out Au/MIL-101(Fe)/BiOBr(AMB-2)works in a durable and high-performance manner for both Cr(VI)and norfloxacin(NOR)eradication under visible light,manifesting up to 53.3 and 2 times greater Cr(VI)and NOR abatement rates,respectively,than BiOBr.Remarkably,AMB-2's ability to remove Cr(VI)in a Cr(VI)-NOR coexistence system is appreciably better than in a sole-Cr(VI)environment;the synergy among Cr(VI),NOR,and AMB-2 results in the better utilization of photo-induced carriers,yielding a desirable capacity for decontaminating Cr(VI)and NOR synchronously.The integration of MOF-based S-scheme heterojunctions and a plasmonic effect contributes to markedly reinforced photocatalytic ability by increasing the number of active sites,augmenting the visible-light absorbance,boosting the efficient disassociation and redistribution of powerful photo-carriers,and elevating the generation of reactive substances.We provide details of the photocatalytic mechanism,NOR decomposition process,and bio-toxicity of the intermediates.This synergistic strategy of modifying S-scheme heterojunctions with a noble metal opens new horizons for devising excellent MOF-based photosystems with a plasmonic effect for environment purification. 展开更多
关键词 Au/MIL-101(Fe)/BiOBr Metal-organic framework(MOF) Plasmonic effect S-scheme Cr(VI)removal Antibiotic degradation Synchronous removal
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部