Bell layered space-time architecture (BLAST) is a multi-antenna communication structure with high spectrum efficiency, and it has found wide applications in LANs and WLANs. However, its performance is much poorer th...Bell layered space-time architecture (BLAST) is a multi-antenna communication structure with high spectrum efficiency, and it has found wide applications in LANs and WLANs. However, its performance is much poorer than those of other space-time coding approaches. In order to improve its performance, an improved BLAST based on RAKE receiving is investigated. The new system introduces orthogonal spreading sequences (OSS) into the transmitter while retains the basic structure of BLAST. The proposed receiver suppresses interferences from other antennas by the orthogonality contained in the received signals, and extracts information from each receiving antenna by using RAKE receiving principle to construct efficient statistic decision. Simulation results show that the improved system performs well over both frequency-fiat and frequency-selective fading channels.展开更多
In order to improve the poor performance of Space-Time Block Coding (STBC) in a downlink correlated fading environment, a closed loop scheme is proposed. With the known channel fading statistics fed from the receiver,...In order to improve the poor performance of Space-Time Block Coding (STBC) in a downlink correlated fading environment, a closed loop scheme is proposed. With the known channel fading statistics fed from the receiver, eigenbeamforming is utilized to improve the performance of STBC at the transmitter. The new system achieves the array and diversity gain simultaneously. Because reduced dimension processing is adopted, the proposed system has a relative simple structure compared with the traditional beamforming system. The validity of the scheme is verified in several situations by simulation experiments.展开更多
A new direction synthetic method for monostatic multiple input multiple output (MIMO) radar is presented based on synthetic impulse and aperture radar (SIAR) system. Concerned with the monostatic MIMO radar which simu...A new direction synthetic method for monostatic multiple input multiple output (MIMO) radar is presented based on synthetic impulse and aperture radar (SIAR) system. Concerned with the monostatic MIMO radar which simultaneously emits orthogonal signals with multi-carrier-frequency and possesses sparsely distributed transmitting and receiving arrays with respective location, as well as the situation for the presence of multipath propagation in the low flying target’s echo, the method integrates the aperture of the transmitting arrays with the receiving arrays to form the digital beam-forming (DBF) in azimuth and elevation dimensions. And a study has been made of planar general MUSIC algorithm based on decorrelating the multipath signals of multi-carrier-frequency MIMO radar. Through compensat-ing the phase delay of both the transmitting and the receiving arrays and synthe-sizing the transmitting beam in two dimensions at the receiver, the angular resolu-tion and measurement accuracy are improved and the computational complexity is reduced after transforming the three-dimensional (3D) parameter estimation prob-lem into a two-dimensional (2D) one. Finally, the Cramer-Rao Bounds (CRBs) of DOA estimation for azimuth and elevation is put forward with the exsiting multipath propagation. Results of computer simulation demonstrate the validity of the new method.展开更多
To enhance the resolution of parameter estimation with limited samples received by a short passive array, an iterative nonparametric algorithm for estimating the frequencies and direction-of-arrivals (DOAs) of signa...To enhance the resolution of parameter estimation with limited samples received by a short passive array, an iterative nonparametric algorithm for estimating the frequencies and direction-of-arrivals (DOAs) of signals is proposed. The cost function is constructed using 12-norm Gaussian entropy combined with an additional constraint, 12-norm constraint or linear constraint. By minimizing the cost functions in the temporal and the spatial dimensions using corresponding iteration algorithms respectively, the sparse discrete Fourier transforms (DFTs) of temporal and spatial samples are obtained to represent the extrapolated sequences with much larger sizes than the original samples. Then frequency and angle estimates are obtained by performing the traditional simple methods on the extrapolated sequences. It is shown that the proposed algorithm offers increased resolution and significantly reduced sidelobes compared with the periodogram and beamforming based methods. And it achieves high precision compared with the high-resolution method with lower computational burden. Some numerical simulations and real data processing results are presented to verify the effectiveness of the method.展开更多
A fast MUltiple SIgnal Classification (MUSIC) spectrum peak search algorithm is devised, which regards the power of the MUSIC spectrum function as target distribution up to a constant of proportionality, and uses Metr...A fast MUltiple SIgnal Classification (MUSIC) spectrum peak search algorithm is devised, which regards the power of the MUSIC spectrum function as target distribution up to a constant of proportionality, and uses Metropolis-Hastings (MH) sampler, one of the most popular Markov Chain Monte Carlo (MCMC) techniques, to sample from it. The proposed method reduces greatly the tremendous computation and storage costs in conventional MUSIC techniques i.e., about two and four orders of magnitude in computation and storage costs under the conditions of the experiment in the paper respectively.展开更多
文摘Bell layered space-time architecture (BLAST) is a multi-antenna communication structure with high spectrum efficiency, and it has found wide applications in LANs and WLANs. However, its performance is much poorer than those of other space-time coding approaches. In order to improve its performance, an improved BLAST based on RAKE receiving is investigated. The new system introduces orthogonal spreading sequences (OSS) into the transmitter while retains the basic structure of BLAST. The proposed receiver suppresses interferences from other antennas by the orthogonality contained in the received signals, and extracts information from each receiving antenna by using RAKE receiving principle to construct efficient statistic decision. Simulation results show that the improved system performs well over both frequency-fiat and frequency-selective fading channels.
文摘In order to improve the poor performance of Space-Time Block Coding (STBC) in a downlink correlated fading environment, a closed loop scheme is proposed. With the known channel fading statistics fed from the receiver, eigenbeamforming is utilized to improve the performance of STBC at the transmitter. The new system achieves the array and diversity gain simultaneously. Because reduced dimension processing is adopted, the proposed system has a relative simple structure compared with the traditional beamforming system. The validity of the scheme is verified in several situations by simulation experiments.
基金Supported by Program for New Century Excellent Talents in University (Grant No. NCET-06-0856) the National Natural Science Foundation of China (Grant No. 60772068)
文摘A new direction synthetic method for monostatic multiple input multiple output (MIMO) radar is presented based on synthetic impulse and aperture radar (SIAR) system. Concerned with the monostatic MIMO radar which simultaneously emits orthogonal signals with multi-carrier-frequency and possesses sparsely distributed transmitting and receiving arrays with respective location, as well as the situation for the presence of multipath propagation in the low flying target’s echo, the method integrates the aperture of the transmitting arrays with the receiving arrays to form the digital beam-forming (DBF) in azimuth and elevation dimensions. And a study has been made of planar general MUSIC algorithm based on decorrelating the multipath signals of multi-carrier-frequency MIMO radar. Through compensat-ing the phase delay of both the transmitting and the receiving arrays and synthe-sizing the transmitting beam in two dimensions at the receiver, the angular resolu-tion and measurement accuracy are improved and the computational complexity is reduced after transforming the three-dimensional (3D) parameter estimation prob-lem into a two-dimensional (2D) one. Finally, the Cramer-Rao Bounds (CRBs) of DOA estimation for azimuth and elevation is put forward with the exsiting multipath propagation. Results of computer simulation demonstrate the validity of the new method.
基金supported by the Program for New Century Excellent Talents in University (NCET-06-0856)the National Natural Science Foundation of China (60772068)
文摘To enhance the resolution of parameter estimation with limited samples received by a short passive array, an iterative nonparametric algorithm for estimating the frequencies and direction-of-arrivals (DOAs) of signals is proposed. The cost function is constructed using 12-norm Gaussian entropy combined with an additional constraint, 12-norm constraint or linear constraint. By minimizing the cost functions in the temporal and the spatial dimensions using corresponding iteration algorithms respectively, the sparse discrete Fourier transforms (DFTs) of temporal and spatial samples are obtained to represent the extrapolated sequences with much larger sizes than the original samples. Then frequency and angle estimates are obtained by performing the traditional simple methods on the extrapolated sequences. It is shown that the proposed algorithm offers increased resolution and significantly reduced sidelobes compared with the periodogram and beamforming based methods. And it achieves high precision compared with the high-resolution method with lower computational burden. Some numerical simulations and real data processing results are presented to verify the effectiveness of the method.
基金Supported by the National Natural Science Foundation of China (No.60172028).
文摘A fast MUltiple SIgnal Classification (MUSIC) spectrum peak search algorithm is devised, which regards the power of the MUSIC spectrum function as target distribution up to a constant of proportionality, and uses Metropolis-Hastings (MH) sampler, one of the most popular Markov Chain Monte Carlo (MCMC) techniques, to sample from it. The proposed method reduces greatly the tremendous computation and storage costs in conventional MUSIC techniques i.e., about two and four orders of magnitude in computation and storage costs under the conditions of the experiment in the paper respectively.