A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat-...A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat-form. The technique utilizes the strong databases, complete sets of modules, and flexible simulation tools of the Aspen plus system and retains the characteristics of the proposed kinetic model. The calculated results are in fair agreement with the actual operating data. Based on the model of the whole reforming process, the process is opti-mized and the optimization results are tested in the actual industrial unit for about two months. The test shows that the process profit increases about 1000yuan·h-1 averagely, which is close to the calculated result.展开更多
A fuzzy neural network (FNN) model is developed to predict the 4-CBA concentration of the oxidation unit in purified terephthalic acid process. Several technologies are used to deal with the process data before modeli...A fuzzy neural network (FNN) model is developed to predict the 4-CBA concentration of the oxidation unit in purified terephthalic acid process. Several technologies are used to deal with the process data before modeling.First,a set of preliminary input variables is selected according to prior knowledge and experience. Secondly,a method based on the maximum correlation coefficient is proposed to detect the dead time between the process variables and response variables. Finally, the fuzzy curve method is used to reduce the unimportant input variables.The simulation results based on industrial data show that the relative error range of the FNN model is narrower than that of the American Oil Company (AMOCO) model. Furthermore, the FNN model can predict the trend of the 4-CBA concentration more accurately.展开更多
Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a se...Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a semi-empirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithra applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.展开更多
In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped ki...In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped kinetics re-action network and has been proved to be quite effective in terms of industrial application. The primary objectives in-clude maximization of yield of the aromatics and minimization of the yield of heavy aromatics. Four reactor inlet tem-peratures, reaction pressure, and hydrogen-to-oil molar ratio are selected as the decision variables. A genetic algorithm, which is proposed by the authors and named as the neighborhood and archived genetic algorithm (NAGA), is applied to solve this multiobjective optimization problem. The relations between each decision variable and the two objectives are also proposed and used for choosing a suitable solution from the obtained Pareto set.展开更多
A new multi-step adaptive predictive control algorithm for a class of bilinear systems is presented. The structure of the bilinear system is converted into a simple linear model by using nonlinear support vector machi...A new multi-step adaptive predictive control algorithm for a class of bilinear systems is presented. The structure of the bilinear system is converted into a simple linear model by using nonlinear support vector machine (SVM) dynamic approximation with analytical control law derived. The method does not need on-line parameters estimation because the system’s internal model has been transformed into an off-line global model. Compared with other traditional methods, this control law reduces on-line parameter estimating burden. In addition, its overall linear behavior treating method allows an analytical control law available and avoids on-line nonlinear optimization. Simulation results are presented in the article to illustrate the efficiency of the method.展开更多
A model-reference adaptive control strategy is proposed for a delay chaotic system with known or unknown parameters.Theoretical analysis and numerical simulations show that the controlled system state can track an arb...A model-reference adaptive control strategy is proposed for a delay chaotic system with known or unknown parameters.Theoretical analysis and numerical simulations show that the controlled system state can track an arbitrarily given reference trajectory that may be an equilibrium point,a periodic orbit or a chaotic orbit.展开更多
Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples acco...Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples according to their operating points. Then, the sub-models are estimated by Gaussian Process Regression (GPR). Finally, in order to get a global probabilistic prediction, Bayesian committee mactnne is used to combine the outputs of the sub-estimators. The proposed method has been applied to predict the light naphtha end point in hydrocracker fractionators. Practical applications indicate that it is useful for the online prediction of quality monitoring in chemical processes.展开更多
The binaphthol enantiomers separation process using simulation moving bed technology is simulated with the true moving bed approach (TMB). In order to systematically optimize the process with multiple productive obj...The binaphthol enantiomers separation process using simulation moving bed technology is simulated with the true moving bed approach (TMB). In order to systematically optimize the process with multiple productive objectives, this article develops a variant of tissue P system (TPS). Inspired by general tissue P systems, the special TPS has a tissue-like structure with several membranes. The key rules of each membrane are the communication rule and mutation rule. These characteristics contribute to the diversity of the population, the conquest of the multimodal of objective function, and the convergence of algorithm. The results of comparison with a popular algorithm——the non-dominated sorting genetic algorithm 2(NSGA-2) illustrate that the new algorithm has satisfactory performance. Using the algorithm, this study maximizes synchronously several conflicting objectives, purities of different products, and productivity.展开更多
Prediction of melt index (MI), the most important parameter in determining the product's grade and quality control of polypropylene produced in practical industrial processes, is studied. A novel soft-sensor model ...Prediction of melt index (MI), the most important parameter in determining the product's grade and quality control of polypropylene produced in practical industrial processes, is studied. A novel soft-sensor model with principal component analysis (PCA), radial basis function (RBF) networks, and multi-scale analysis (MSA) is proposed to infer the MI of manufactured products from real process variables, where PCA is carried out to select the most relevant process features and to eliminate the correlations of the input variables, MSA is introduced to a^quire much more information and to reduce the uncertainty of the system, and RBF networks are used to characterize the nonlinearity of the process. The research results show that the proposed method provides promising prediction reliability and accuracy, and supposed to have extensive application prospects in propylene polymerization processes.展开更多
A non-linear non-ideal model, taking into account non-linear competitive isotherms, axial dispersion, film mass transfer, intraparticle diffusion, and port periodic switching, was developed to simulate the dynamics of...A non-linear non-ideal model, taking into account non-linear competitive isotherms, axial dispersion, film mass transfer, intraparticle diffusion, and port periodic switching, was developed to simulate the dynamics of simulated moving bed chromatography (SMBC). The model equations were solved by a new efficient numerical technique of orthogonal collocation on finite elements with periodical movement of concentration vector. The simulated SMBC performance is in accordance with the experimental results reported in the literature for separation of l,1'-bi-2-naphthol enantiomers using SMBC. This model is useful for design, operation, optimization and scale-up of non-linear SMBC for chiral separations with significant non-ideal effects, especially for high solute concentration and small intraparticle diffusion coefficient or large chiral stationary phase particle.展开更多
To overcome the problem that soft sensor models cannot be updated with the process changes, a soft sensor modeling algorithm based on hybrid fuzzy c-means (FCM) algorithm and incremental support vector machines (I...To overcome the problem that soft sensor models cannot be updated with the process changes, a soft sensor modeling algorithm based on hybrid fuzzy c-means (FCM) algorithm and incremental support vector machines (ISVM) is proposed. This hybrid algorithm FCMISVM includes three parts: samples clustering based on FCM algorithm, learning algorithm based on ISVM, and heuristic sample displacement method. In the training process, the training samples are first clustered by the FCM algorithm, and then by training each clustering with the SVM algorithm, a sub-model is built to each clustering. In the predicting process, when an incremental sample that represents new operation information is introduced in the model, the fuzzy membership function of the sample to each clustering is first computed by the FCM algorithm. Then, a corresponding SVM sub-model of the clustering with the largest fuzzy membership function is used to predict and perform incremental learning so the model can be updated on-line. An old sample chosen by heuristic sample displacement method is then discarded from the sub-model to control the size of the working set. The proposed method is applied to predict the p-xylene (PX) purity in the adsorption separation process. Simulation results indicate that the proposed method actually increases the model's adaptive abilities to various operation conditions and improves its generalization capability.展开更多
An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is pre...An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.展开更多
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established...A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.展开更多
In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-s...In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.展开更多
Asynchronous simulated moving bed chromatography (ASMBC), known also as the 'VARICOL' process, is more efficient and flexible than the well-known and traditional simulated moving bed chromatography (SMBC). A d...Asynchronous simulated moving bed chromatography (ASMBC), known also as the 'VARICOL' process, is more efficient and flexible than the well-known and traditional simulated moving bed chromatography (SMBC). A detailed model of ASMBC, taking account of non-linear competitive isotherms, mass transfer parameters, and complex port switching schedule parameters, was developed to simulate the complex dynamics of ASMBC.The simulated performance is in close agreement with the experimental data of chiral separation reported in the literature. The simulation results show that ASMBC can achieve the performance similar to SMBC with fewer columns and can achieve better performance than SMBC with the same total column number. All design and operation parameters can be chosen correctly by numerical simulation. This detailed ASMBC model and the numerical technique are useful for design, operation, optimization and scale-up of ASMBC.展开更多
A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining...A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.展开更多
A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the n...A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.展开更多
基金Supported by the National Natural Science Foundation of China (No.60421002).
文摘A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat-form. The technique utilizes the strong databases, complete sets of modules, and flexible simulation tools of the Aspen plus system and retains the characteristics of the proposed kinetic model. The calculated results are in fair agreement with the actual operating data. Based on the model of the whole reforming process, the process is opti-mized and the optimization results are tested in the actual industrial unit for about two months. The test shows that the process profit increases about 1000yuan·h-1 averagely, which is close to the calculated result.
基金Supported by the National Outstanding Youth Science Foundation of China (No. 60025308).
文摘A fuzzy neural network (FNN) model is developed to predict the 4-CBA concentration of the oxidation unit in purified terephthalic acid process. Several technologies are used to deal with the process data before modeling.First,a set of preliminary input variables is selected according to prior knowledge and experience. Secondly,a method based on the maximum correlation coefficient is proposed to detect the dead time between the process variables and response variables. Finally, the fuzzy curve method is used to reduce the unimportant input variables.The simulation results based on industrial data show that the relative error range of the FNN model is narrower than that of the American Oil Company (AMOCO) model. Furthermore, the FNN model can predict the trend of the 4-CBA concentration more accurately.
基金National Key Technologies Research and Development Program in the 10th Five-year Phan(No.2001BA204B01)National Outstanding Youth Science Foundation of China(No.60025308)
文摘Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a semi-empirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithra applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.
基金Supported by the National Natural Science Foundation of China (No.60421002).
文摘In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped kinetics re-action network and has been proved to be quite effective in terms of industrial application. The primary objectives in-clude maximization of yield of the aromatics and minimization of the yield of heavy aromatics. Four reactor inlet tem-peratures, reaction pressure, and hydrogen-to-oil molar ratio are selected as the decision variables. A genetic algorithm, which is proposed by the authors and named as the neighborhood and archived genetic algorithm (NAGA), is applied to solve this multiobjective optimization problem. The relations between each decision variable and the two objectives are also proposed and used for choosing a suitable solution from the obtained Pareto set.
基金Project (No. 60421002) supported by the National Natural ScienceFoundation of China
文摘A new multi-step adaptive predictive control algorithm for a class of bilinear systems is presented. The structure of the bilinear system is converted into a simple linear model by using nonlinear support vector machine (SVM) dynamic approximation with analytical control law derived. The method does not need on-line parameters estimation because the system’s internal model has been transformed into an off-line global model. Compared with other traditional methods, this control law reduces on-line parameter estimating burden. In addition, its overall linear behavior treating method allows an analytical control law available and avoids on-line nonlinear optimization. Simulation results are presented in the article to illustrate the efficiency of the method.
文摘A model-reference adaptive control strategy is proposed for a delay chaotic system with known or unknown parameters.Theoretical analysis and numerical simulations show that the controlled system state can track an arbitrarily given reference trajectory that may be an equilibrium point,a periodic orbit or a chaotic orbit.
基金Supported by the National High Technology Research and Development Program of China (2006AA040309)National BasicResearch Program of China (2007CB714000)
文摘Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples according to their operating points. Then, the sub-models are estimated by Gaussian Process Regression (GPR). Finally, in order to get a global probabilistic prediction, Bayesian committee mactnne is used to combine the outputs of the sub-estimators. The proposed method has been applied to predict the light naphtha end point in hydrocracker fractionators. Practical applications indicate that it is useful for the online prediction of quality monitoring in chemical processes.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z182), National Natu- ral Science Foundation of China (60736021), and National Creative Research Groups Science Foundation of China (60721062)
基金Supported by the National Natural Science Foundation of China (No.60421002)
文摘The binaphthol enantiomers separation process using simulation moving bed technology is simulated with the true moving bed approach (TMB). In order to systematically optimize the process with multiple productive objectives, this article develops a variant of tissue P system (TPS). Inspired by general tissue P systems, the special TPS has a tissue-like structure with several membranes. The key rules of each membrane are the communication rule and mutation rule. These characteristics contribute to the diversity of the population, the conquest of the multimodal of objective function, and the convergence of algorithm. The results of comparison with a popular algorithm——the non-dominated sorting genetic algorithm 2(NSGA-2) illustrate that the new algorithm has satisfactory performance. Using the algorithm, this study maximizes synchronously several conflicting objectives, purities of different products, and productivity.
基金Supported by the National Natural Science Foundation of China (No. 20106008)National HI-TECH Industrialization Program of China (No. Fagai-Gaoji-2004-2080)Science Fund for Distinguished Young Scholars of Zhejiang University (No. 111000-581645).
文摘Prediction of melt index (MI), the most important parameter in determining the product's grade and quality control of polypropylene produced in practical industrial processes, is studied. A novel soft-sensor model with principal component analysis (PCA), radial basis function (RBF) networks, and multi-scale analysis (MSA) is proposed to infer the MI of manufactured products from real process variables, where PCA is carried out to select the most relevant process features and to eliminate the correlations of the input variables, MSA is introduced to a^quire much more information and to reduce the uncertainty of the system, and RBF networks are used to characterize the nonlinearity of the process. The research results show that the proposed method provides promising prediction reliability and accuracy, and supposed to have extensive application prospects in propylene polymerization processes.
基金Supported by the National Natural Science Foundation of China(No.20206027)and the Natural Science Foundation of Zhejiang Province(No.202046).
文摘A non-linear non-ideal model, taking into account non-linear competitive isotherms, axial dispersion, film mass transfer, intraparticle diffusion, and port periodic switching, was developed to simulate the dynamics of simulated moving bed chromatography (SMBC). The model equations were solved by a new efficient numerical technique of orthogonal collocation on finite elements with periodical movement of concentration vector. The simulated SMBC performance is in accordance with the experimental results reported in the literature for separation of l,1'-bi-2-naphthol enantiomers using SMBC. This model is useful for design, operation, optimization and scale-up of non-linear SMBC for chiral separations with significant non-ideal effects, especially for high solute concentration and small intraparticle diffusion coefficient or large chiral stationary phase particle.
基金Supported by the National Natural Science Foundation of China (60421002) and priority supported financially by "the New Century 151 Talent Project" of Zhejiang Province.
文摘To overcome the problem that soft sensor models cannot be updated with the process changes, a soft sensor modeling algorithm based on hybrid fuzzy c-means (FCM) algorithm and incremental support vector machines (ISVM) is proposed. This hybrid algorithm FCMISVM includes three parts: samples clustering based on FCM algorithm, learning algorithm based on ISVM, and heuristic sample displacement method. In the training process, the training samples are first clustered by the FCM algorithm, and then by training each clustering with the SVM algorithm, a sub-model is built to each clustering. In the predicting process, when an incremental sample that represents new operation information is introduced in the model, the fuzzy membership function of the sample to each clustering is first computed by the FCM algorithm. Then, a corresponding SVM sub-model of the clustering with the largest fuzzy membership function is used to predict and perform incremental learning so the model can be updated on-line. An old sample chosen by heuristic sample displacement method is then discarded from the sub-model to control the size of the working set. The proposed method is applied to predict the p-xylene (PX) purity in the adsorption separation process. Simulation results indicate that the proposed method actually increases the model's adaptive abilities to various operation conditions and improves its generalization capability.
基金Project (No. 60421002) supported by the National Natural ScienceFoundation of China
文摘An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.
文摘A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.
基金Supported by the National Natural Science Foundation of China (No.60421002) and the New Century 151 Talent Project of Zhejiang Province.
文摘In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2008AA042902), National Natural Science Foundation of P. R. China (60736021), and National Creative Research Groups Science Foundation of China (60721061)
基金Supported by National Young Science Foundation of P.R.China(60604003)National Natural Science Key Foundation of P.R.China(60434020)National Key Technologies Research and Development Program in the 10th Five-year Plan(2001BA204B01)
文摘这份报纸处理与州的时间延期,参数无常和未知统计特征,但是与有限力量骚乱为 Lurie 单个系统的一个班过滤的柔韧的 H 的问题,试图设计一个要用体力地稳定的过滤器以便单个系统是的不明确的 Lurie 时间延期不仅常规,免费、稳定的推动,而且为所有可被考虑的无常为过滤错误动力学有 H 性能的规定水平。为如此的一个过滤器的存在的一个足够的条件以线性矩阵不平等(LMI ) 被建议。当 LMI 的这个集合的一个答案存在时,一个需要的过滤器的参量的矩阵能容易用 LMI 工具箱被获得。
基金Supported by the National Natural Science Foundation of China (No. 20206027), the Natural Science Foundation of Zhejiang Province (No. 202046)the National 973 Program of China (No. 2002CB312200).
文摘Asynchronous simulated moving bed chromatography (ASMBC), known also as the 'VARICOL' process, is more efficient and flexible than the well-known and traditional simulated moving bed chromatography (SMBC). A detailed model of ASMBC, taking account of non-linear competitive isotherms, mass transfer parameters, and complex port switching schedule parameters, was developed to simulate the complex dynamics of ASMBC.The simulated performance is in close agreement with the experimental data of chiral separation reported in the literature. The simulation results show that ASMBC can achieve the performance similar to SMBC with fewer columns and can achieve better performance than SMBC with the same total column number. All design and operation parameters can be chosen correctly by numerical simulation. This detailed ASMBC model and the numerical technique are useful for design, operation, optimization and scale-up of ASMBC.
基金This work is supported by the National Natural Science Foundation of China (No.60421002) Priority supported financially by the New Century 151 Talent Project of Zhejiang Province.
文摘A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.
文摘A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.