Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, dis...Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding(FSW). In this investigation, a comparative evaluation of mechanical(tensile, impact,hardness) properties and microstructural features of shielded metal arc(SMA), gas metal arc(GMA) and friction stir welded(FSW) naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.展开更多
There has been some good news, and some bad news in the controlled fusion community recently. The good news is that the Lawrence Livermore National Laboratory (LLNL) has recently produced a burning plasma. It succeede...There has been some good news, and some bad news in the controlled fusion community recently. The good news is that the Lawrence Livermore National Laboratory (LLNL) has recently produced a burning plasma. It succeeded on several of its shots where ~1.5 - 2 megajoules from its laser (National Ignition Facility, or NIF) has generated ~1.3 - 3 megajoules of fusion products. The highest ratio of fusion energy to laser energy it achieved, defined as its Q, was 1.5 at the time of this writing. While LLNL is sponsored by nuclear stockpile stewardship, this author sees a likely path from their result to fusion for energy for the world, a path using a very different laser and a very different target configuration. The bad news is that the International Tokamak Experimental Reactor (ITER) has continued to stumble on more and more delays and cost overruns, as its capital cost has mushroomed from ~$5 billion to ~ $25 B. This paper argues that the American fusion effort, for energy for the civilian economy, should switch its emphasis not only from magnetic fusion to inertial fusion but should also take much more seriously fusion breeding. Over the next few decades, the world might well be setting up more and more thermal nuclear reactors, and these might need fuel which only fusion breeders can supply. In other words, fusion should begin to color outside the lines.展开更多
The assertion that a climate crisis is rapidly approaching due to excess carbon dioxide (CO2) in the atmosphere is said to be based on science. This science is summarized in the statements of the major scientific soci...The assertion that a climate crisis is rapidly approaching due to excess carbon dioxide (CO2) in the atmosphere is said to be based on science. This science is summarized in the statements of the major scientific societies. These statements, have motivated, governments, the media, and much of the public to commit to abandoning fossil, i.e. going to “net zero” at some time in the not-so-distant future, perhaps by 2050, 26 years from now. The claims of these scientific societies clearly have a profound impact on the government, the media and the public, and therefore the scientific basis for these claims needs to be frequently and rigorously reexamined by the societies, and scrutinized by the public. This paper illustrates some serious concerns regarding the claims of these societies. It is not difficult to question these claims by comparing them with actual data from well-established organizations such as NOAA and NASA. Furthermore, the claims seem to go against such well-established scientific laws as the Stefan Boltzman radiation law, and le Chatelier’s principle. If the statements of the societies overstate the danger, or are even incorrect, they may be motivating the United States, the western world, or even the whole world to make an enormously expensive and unnecessary transition to an energy infrastructure that is more expensive, less reliable, and more environmentally damaging than the one we have today. This article suggests that these scientific societies reexamine their climate statements with the goal of making them more moderate and more scientifically correct.展开更多
Learning incorporates a broad range of complex procedures. Machine learning(ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorith...Learning incorporates a broad range of complex procedures. Machine learning(ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficultto-program applications, and software applications. It is a collection of a variety of algorithms(e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore,nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.展开更多
Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level...Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level vortex(EMV).Sensitivity experiments show that the genesis timing depends greatly on initial vorticity vertical profiles.The larger the initial column integrated absolute vorticity,the greater the genesis efficiency is.Given the same column integrated absolute vorticity,a bottom vortex has higher genesis efficiency than a mid-level vortex.A common feature among these experiments is the formation of a mid-level vorticity maximum prior to TC genesis irrespective where the initial vorticity maximum locates.Both the EMV and EBV scenarios share the following development characteristics:1)a transition from non-organized cumulus-scale(~5 km)convective cells into an organized meso-vortex-scale(~50 to 100 km)system through upscale cascade processes,2)the establishment of a nearly saturated air column prior to a rapid drop of the central minimum pressure,and 3)a multiple convective-stratiform phase transition.A genesis efficiency index(GEI)is formulated that includes the following factors:initial column integrated absolute vorticity,vorticity at top of the boundary layer and vertically integrated relative humidity.The calculated GEI reflects well the simulated genesis efficiency and thus may be used to estimate how fast a tropical disturbance develops into a TC.展开更多
Along with laser-indirect(X-ray)-drive and magnetic-drive target concepts,laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion.In the United States,a national program...Along with laser-indirect(X-ray)-drive and magnetic-drive target concepts,laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion.In the United States,a national program has been established to demonstrate and understand the physics of laser direct drive.The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and lasereplasma interaction and coupling physics at the MJ scale at the National Ignition Facility.This article will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.展开更多
Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecor...Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecorrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosionecorrosion problems. High velocity oxy-fuel(HVOF)spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology(RSM) was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.展开更多
Two years of mid-latitude cirrus cloud macrophysical and optical properties over North China are described from Earth-orbiting Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP) satellite measurements. Global cl...Two years of mid-latitude cirrus cloud macrophysical and optical properties over North China are described from Earth-orbiting Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP) satellite measurements. Global cloud climatological studies based on active remote sensing data sets benefit from more accurate resolution of vertical structure and more reliable detection of optically thin layers.The mean values for cirrus cases over North China are 0.19±0.18 for infrared emittance,0.41±0.68 for visible optical depth, 0.26±0.12 for integrated depolarization ratio,and 0.72±0.22 for integrated color ratio.When studied using reasonable assumptions for the relationship between extinction and ice crystal backscatter coefficients,our results show that most of the cirrus clouds profiled using the 0.532μm channel data stream correspond with an optical depth of less than 1.0.The dependence of cirrus cloud properties on cirrus cloud mid-cloud temperature and geometry thickness are generally similar to the results derived from the ground-based lidar, which are mainly impacted by the adiabatic process on the ice cloud content.However,the differences in macrophysical parameter variability indicate the limits of spaceborne-lidar and dissimilarities in regional climate variability and the nature and source of cloud nuclei in different geographical regions.展开更多
Sodium-ion battery materials and devices are promising candidates for largescale applications,owing to the abundance and low cost of sodium sources.Emerging sodium-ion pseudocapacitive materials provide one approach f...Sodium-ion battery materials and devices are promising candidates for largescale applications,owing to the abundance and low cost of sodium sources.Emerging sodium-ion pseudocapacitive materials provide one approach for achieving high capacity at high rates,but are currently not well understood.Herein,a comprehensive overview of the fundamentals and electrochemical behaviors of vanadium-based pseudocapacitive materials for sodium-ion storage is presented.The insight of sodium-ion storage mechanisms for various vanadium-based materials,including vanadium oxides,vanadates,vanadium sulfides,nitrides,and carbides are systematically discussed and summarized.In particular,areas for further development to improve fundamental understanding of electrochemical and structural properties of materials are identified.Finally,we provide a perspective on the application of pseudocapacitive materials in high-power and high-energy sodium-ion storage devices(e.g.,sodium-ion capacitors).展开更多
Hydrous ruthenium oxide(h-Ru O) nanoparticles and its composite with multiwalled carbon nanotubes(h-Ru O/MWCNT) were synthesized by a simple hydrothermal method and proved to have potential application as hybrid super...Hydrous ruthenium oxide(h-Ru O) nanoparticles and its composite with multiwalled carbon nanotubes(h-Ru O/MWCNT) were synthesized by a simple hydrothermal method and proved to have potential application as hybrid supercapacitor material.The h-Ru Oand h-Ru O/MWCNT were characterized for their physico-chemical properties by PXRD,BET surface area,Raman,SEM-EDS and TEM techniques.The electrochemical performance of the materials were investigated,specific capacitance(Cs) of h-Ru Oand hRu O/MWCNT estimated by their cyclic voltammetric studies were found to be 604 and 1585 F/g respectively at a scan rate of 2 m V/s in the potential range 0–1.2 V.Further,this value was found to be nearly three times higher than that of pure h-Ru O.An asymmetric supercapacitor(AS) device was fabricated by employing h-Ru O/MWCNT as the positive electrode and activated carbon as the negative electrode.The device exhibited Cs of 61.8 F/g at a scan rate of 2 m V/s.Further,the device showed excellent long term stability for 20,000 cycles with 88% capacitance retention at a high current density of 25 A/g.展开更多
We elaborate an error budget for the long-term accuracy of IGS(International Global Navigation Satellite System Service) polar motion estimates, concluding that it is probably about 25-30 μas(1-sigma)overall, alt...We elaborate an error budget for the long-term accuracy of IGS(International Global Navigation Satellite System Service) polar motion estimates, concluding that it is probably about 25-30 μas(1-sigma)overall, although it is not possible to quantify possible contributions(mainly annual) that might transfer directly from aliases of subdaily rotational tide errors. The leading sources are biases arising from the need to align daily, observed terrestrial frames, within which the pole coordinates are expressed and which are continuously deforming, to the secular, linear international reference frame. Such biases are largest over spans longer than about a year. Thanks to the very large number of IGS tracking stations, the formal covariance errors are much smaller,around 5 to 10 μas. Large networks also permit the systematic frame-related errors to be more effectively minimized but not eliminated. A number of periodic errors probably also influence polar motion results, mainly at annual, GPS(Global Positioning System) draconitic, and fortnightly periods, but their impact on the overall error budget is unlikely to be significant except possibly for annual tidal aliases. Nevertheless, caution should be exercised in interpreting geophysical excitations near any of the suspect periods.展开更多
Mathematical investigations of the dynamic response of buried systems to thermal and/or electromagnetic stimulation continues to be of great importance. The size of such systems can range from the microelectronic scal...Mathematical investigations of the dynamic response of buried systems to thermal and/or electromagnetic stimulation continues to be of great importance. The size of such systems can range from the microelectronic scale to large underground structures. Stimulation can occur from unwanted electromagnetic signals entering the buried system, and for assessing the operating state of a buried system that is not usually physically accessible. In both cases detecting damage or status can be accomplished by examining the time dependence of the resultant surface temperature. This study shows how to determine surface temperature for a hypothetical thermal-plus-systems using a combination of Fourier-space and Laplace-time transform techniques. The hypothetical model can be generalized from scaling the relevant relationships.展开更多
Here we demonstrate the fabrication, electrochemical performance and application of an asymmetric supercapacitor (AS) device constructed with ss-Ni(OH)(2)/MWCNTs as positive electrode and KOH activated honeycomb-like ...Here we demonstrate the fabrication, electrochemical performance and application of an asymmetric supercapacitor (AS) device constructed with ss-Ni(OH)(2)/MWCNTs as positive electrode and KOH activated honeycomb-like porous carbon (K-PC) derived from banana fibers as negative electrode. Initially, the electrochemical performance of hydrothermally synthesized ss-Ni(OH)(2)/MWCNTs nanocomposite and K-PC was studied in a three-electrode system using 1 M KOH. These materials exhibited a specific capacitance (Cs) of 1327 Fig and 324 F/g respectively at a scan rate of 10 mV/s. Further, the AS device i.e., ss-Ni(OH)(2)/MWCNTs// K-PC in 1 M KOH solution, demonstrated a Cs of 156 F/g at scan rate of 10 mV/s in a broad cell voltage of 0-2.2 V. The device demonstrated a good rate capability by maintaining a Cs of 59 F/g even at high current density (25 A/g). The device also offered high energy density of 63 Wh/kg with maximum power density of 5.2 kW/kg. The AS device exhibited excellent cycle life with 100% capacitance retention at 5000th cycle at a high current density of 25 A/g. Two AS devices connected in series were employed for powering a pair of LEDs of different colors and also a mini fan. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
The smart grid is the next generation of power and distribution systems. The integration of advanced network, communications, and computing techniques allows for the enhancement of efficiency and reliability. The smar...The smart grid is the next generation of power and distribution systems. The integration of advanced network, communications, and computing techniques allows for the enhancement of efficiency and reliability. The smart grid interconnects the flow of information via the power line, intelligent metering, renewable and distributed energy systems, and a monitoring and controlling infrastructure. For all the advantages that these components come with, they remain at risk to a spectrum of physical and digital attacks. This paper will focus on digital vulnerabilities within the smart grid and how they may be exploited to form full fledged attacks on the system. A number of countermeasures and solutions from the literature will also be reported, to give an overview of the options for dealing with such problems. This paper serves as a triggering point for future research into smart grid cyber security.展开更多
Wave-wave interactions cause energy cascades. These are the most important processes in the upper ocean because they govern wave-growth and dissipation. Through indirect cascades, wave en- ergy is transferred from hig...Wave-wave interactions cause energy cascades. These are the most important processes in the upper ocean because they govern wave-growth and dissipation. Through indirect cascades, wave en- ergy is transferred from higher frequencies to lower frequencies, leading to wave growth. In direct cas- cades, energy is transferred from lower frequencies to the higher frequencies, which causes waves to break, and dissipation of wave energy. However, the evolution and origin of energy cascade processes are still not fully understood. In particular, for example, results from a recent theory (Kalmykov, 1998) sug- gest that the class I wave-wave interactions (defined by situations involving 4-, 6-, 8-, etc, even numbers of resonantly interacting waves) cause indirect cascades, and Class II wave-wave interactions (involving, 5-, 7-, 9-, etc, .., odd numbers of waves) cause direct cascades. In contrast to this theory, our model results indicate the 4-wave interactions can cause significant transfer of wave energy through both direct and in- direct cascades. In most situations, 4-wave interactions provide the major source of energy transfer for both direct cascades and indirect cascades, except when the wave steepness is larger than 0.28. Our model results agree well with wave measurements, obtained using field buoy data (for example, Lin and Lin, 2002). In particular, in these observations, asymmetrical wave-wave interactions were studied. They found that direct and indirect cascades both are mainly due to the 4-wave interactions when wave steep- ness is less than 0.3.展开更多
The barotropic and baroclinic disturbances axisymmetrized by the barotropic basic vortex are examined in an idealized modeling framework consisting of two layers.Using a Wentzel-Kramers-Brillouin approach,the radial p...The barotropic and baroclinic disturbances axisymmetrized by the barotropic basic vortex are examined in an idealized modeling framework consisting of two layers.Using a Wentzel-Kramers-Brillouin approach,the radial propagation of a baroclinic disturbance is shown to be slower than a barotropic disturbance,resulting in a slower linear axisymmetrization for baroclinic disturbances.The slower-propagating baroclinic waves also cause more baroclinic asymmetric kinetic energy to be transferred directly to the barotropic symmetric vortex than from barotropic disturbances,resulting in a faster axisymmetrization process in the nonlinear baroclinic wave case than in the nonlinear barotropic wave case.展开更多
The effect of baroclinicity on vortex axisymmetrization is examined within a two-layer dynamical model.Three basic state vortices are constructed with varying degrees of baroclinicity:(i) barotropic,(ii) weak bar...The effect of baroclinicity on vortex axisymmetrization is examined within a two-layer dynamical model.Three basic state vortices are constructed with varying degrees of baroclinicity:(i) barotropic,(ii) weak baroclinic,and (iii) strong baroclinic.The linear and nonlinear evolution of wavenumber-2 baroclinic disturbances are examined in each of the three basic state vortices.The results show that the radial propagating speed of the vortex Rossby wave at the lower level is larger with the stronger baroclinicity,resulting in a faster linear axisymmetrization process in the stronger baroclinic vortex.It is found that the nonlinear axisymmetrization process takes the longest time in the strongest baroclinic vortex among the three different basic vortices due to the weaker kinetic energy transfer from asymmetric to symmetric circulations at the lower level.A major finding in this study is that the same initial asymmetric perturbation can have different effects on symmetric vortices depending on the initial vortex baroclinicity.In numerical weather prediction models,this implies that there exists a sensitivity of the subsequent structural and intensity change solely due to the specification of the initial vertical shear of the tropical cyclone vortex.展开更多
The ability to localize moving objects within the environment is critical for autonomous robotic systems. This paper describes a moving object detection and localization system using multiple robots equipped with inex...The ability to localize moving objects within the environment is critical for autonomous robotic systems. This paper describes a moving object detection and localization system using multiple robots equipped with inexpensive optic flow sensors. We demonstrate an architecture capable of detecting motion along a plane by collecting three sets of one-dimensional optic flow data. The detected object is then localized with respect to each of the robots in the system.展开更多
Friction stir processing and post process artificial ageing was successfully carried out on AA7075 with and without reinforcement of SiC particles producing defect free processed zone with uniform distribution of fill...Friction stir processing and post process artificial ageing was successfully carried out on AA7075 with and without reinforcement of SiC particles producing defect free processed zone with uniform distribution of filler material.Effect of SiC particle reinforcement and artificial ageing times on the microstructural modifications was characterized using optical and electron microscopy,electron backscattered diffraction and X-Ray diffraction.Hardness,impact and wear tests were carried out to investigate mechanical behaviour before and after processing.Reinforcement of SiC particles during FSP and subsequent age hardening treatment brought about nearly twofold increase in hardness and impact toughness values by the combined effect of grain refinement,Zener pinning,dispersion strengthening and precipitation hardening.Significant improvement in wear resistance in terms of wear loss was also observed after processing compared to the reference material AA7075-T6.Fractured surface of post FSP age hardened AA7075 alloy exhibited features of ductile fracture during Charpy impact test.展开更多
基金The Director,Naval Material Research Laboratory(NMRL),Ambernath for financial support through CARS project No:G8/15250/2011 dated29.02.2012
文摘Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding(FSW). In this investigation, a comparative evaluation of mechanical(tensile, impact,hardness) properties and microstructural features of shielded metal arc(SMA), gas metal arc(GMA) and friction stir welded(FSW) naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.
文摘There has been some good news, and some bad news in the controlled fusion community recently. The good news is that the Lawrence Livermore National Laboratory (LLNL) has recently produced a burning plasma. It succeeded on several of its shots where ~1.5 - 2 megajoules from its laser (National Ignition Facility, or NIF) has generated ~1.3 - 3 megajoules of fusion products. The highest ratio of fusion energy to laser energy it achieved, defined as its Q, was 1.5 at the time of this writing. While LLNL is sponsored by nuclear stockpile stewardship, this author sees a likely path from their result to fusion for energy for the world, a path using a very different laser and a very different target configuration. The bad news is that the International Tokamak Experimental Reactor (ITER) has continued to stumble on more and more delays and cost overruns, as its capital cost has mushroomed from ~$5 billion to ~ $25 B. This paper argues that the American fusion effort, for energy for the civilian economy, should switch its emphasis not only from magnetic fusion to inertial fusion but should also take much more seriously fusion breeding. Over the next few decades, the world might well be setting up more and more thermal nuclear reactors, and these might need fuel which only fusion breeders can supply. In other words, fusion should begin to color outside the lines.
文摘The assertion that a climate crisis is rapidly approaching due to excess carbon dioxide (CO2) in the atmosphere is said to be based on science. This science is summarized in the statements of the major scientific societies. These statements, have motivated, governments, the media, and much of the public to commit to abandoning fossil, i.e. going to “net zero” at some time in the not-so-distant future, perhaps by 2050, 26 years from now. The claims of these scientific societies clearly have a profound impact on the government, the media and the public, and therefore the scientific basis for these claims needs to be frequently and rigorously reexamined by the societies, and scrutinized by the public. This paper illustrates some serious concerns regarding the claims of these societies. It is not difficult to question these claims by comparing them with actual data from well-established organizations such as NOAA and NASA. Furthermore, the claims seem to go against such well-established scientific laws as the Stefan Boltzman radiation law, and le Chatelier’s principle. If the statements of the societies overstate the danger, or are even incorrect, they may be motivating the United States, the western world, or even the whole world to make an enormously expensive and unnecessary transition to an energy infrastructure that is more expensive, less reliable, and more environmentally damaging than the one we have today. This article suggests that these scientific societies reexamine their climate statements with the goal of making them more moderate and more scientifically correct.
文摘Learning incorporates a broad range of complex procedures. Machine learning(ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficultto-program applications, and software applications. It is a collection of a variety of algorithms(e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore,nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.
基金Office of Naval Research(N000140810256,N000141010774)National Science Foundation of China(41075037)+2 种基金Japan Agency for Marine-Earth Science and Technology(JAMSTEC)NASA(NNX07AG53G)NOAA(NA17RJ1230)
文摘Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level vortex(EMV).Sensitivity experiments show that the genesis timing depends greatly on initial vorticity vertical profiles.The larger the initial column integrated absolute vorticity,the greater the genesis efficiency is.Given the same column integrated absolute vorticity,a bottom vortex has higher genesis efficiency than a mid-level vortex.A common feature among these experiments is the formation of a mid-level vorticity maximum prior to TC genesis irrespective where the initial vorticity maximum locates.Both the EMV and EBV scenarios share the following development characteristics:1)a transition from non-organized cumulus-scale(~5 km)convective cells into an organized meso-vortex-scale(~50 to 100 km)system through upscale cascade processes,2)the establishment of a nearly saturated air column prior to a rapid drop of the central minimum pressure,and 3)a multiple convective-stratiform phase transition.A genesis efficiency index(GEI)is formulated that includes the following factors:initial column integrated absolute vorticity,vorticity at top of the boundary layer and vertically integrated relative humidity.The calculated GEI reflects well the simulated genesis efficiency and thus may be used to estimate how fast a tropical disturbance develops into a TC.
文摘Along with laser-indirect(X-ray)-drive and magnetic-drive target concepts,laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion.In the United States,a national program has been established to demonstrate and understand the physics of laser direct drive.The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and lasereplasma interaction and coupling physics at the MJ scale at the National Ignition Facility.This article will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.
文摘Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecorrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosionecorrosion problems. High velocity oxy-fuel(HVOF)spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology(RSM) was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.
基金supported by the National Natural Science Foundation of China(Grant No.40875084)National Natural Science Foundation for Youth Science Foundation of China(Grant No.40705012).
文摘Two years of mid-latitude cirrus cloud macrophysical and optical properties over North China are described from Earth-orbiting Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP) satellite measurements. Global cloud climatological studies based on active remote sensing data sets benefit from more accurate resolution of vertical structure and more reliable detection of optically thin layers.The mean values for cirrus cases over North China are 0.19±0.18 for infrared emittance,0.41±0.68 for visible optical depth, 0.26±0.12 for integrated depolarization ratio,and 0.72±0.22 for integrated color ratio.When studied using reasonable assumptions for the relationship between extinction and ice crystal backscatter coefficients,our results show that most of the cirrus clouds profiled using the 0.532μm channel data stream correspond with an optical depth of less than 1.0.The dependence of cirrus cloud properties on cirrus cloud mid-cloud temperature and geometry thickness are generally similar to the results derived from the ground-based lidar, which are mainly impacted by the adiabatic process on the ice cloud content.However,the differences in macrophysical parameter variability indicate the limits of spaceborne-lidar and dissimilarities in regional climate variability and the nature and source of cloud nuclei in different geographical regions.
基金support of the Office of Naval Research(ONR grant numbers N000141712244 and N000141912113)support from the National Key R&D Program of China(Grant Number:2016YFA0202602)+1 种基金Natural Science Foundation of Fujian Province of China“Double-First Class”Foundation of Materials and Intel igent Manufacturing Discipline of Xiamen University
文摘Sodium-ion battery materials and devices are promising candidates for largescale applications,owing to the abundance and low cost of sodium sources.Emerging sodium-ion pseudocapacitive materials provide one approach for achieving high capacity at high rates,but are currently not well understood.Herein,a comprehensive overview of the fundamentals and electrochemical behaviors of vanadium-based pseudocapacitive materials for sodium-ion storage is presented.The insight of sodium-ion storage mechanisms for various vanadium-based materials,including vanadium oxides,vanadates,vanadium sulfides,nitrides,and carbides are systematically discussed and summarized.In particular,areas for further development to improve fundamental understanding of electrochemical and structural properties of materials are identified.Finally,we provide a perspective on the application of pseudocapacitive materials in high-power and high-energy sodium-ion storage devices(e.g.,sodium-ion capacitors).
基金financially supported by NRB-Naval Research Board(Project Number-NRB-290/MAT/12-13)
文摘Hydrous ruthenium oxide(h-Ru O) nanoparticles and its composite with multiwalled carbon nanotubes(h-Ru O/MWCNT) were synthesized by a simple hydrothermal method and proved to have potential application as hybrid supercapacitor material.The h-Ru Oand h-Ru O/MWCNT were characterized for their physico-chemical properties by PXRD,BET surface area,Raman,SEM-EDS and TEM techniques.The electrochemical performance of the materials were investigated,specific capacitance(Cs) of h-Ru Oand hRu O/MWCNT estimated by their cyclic voltammetric studies were found to be 604 and 1585 F/g respectively at a scan rate of 2 m V/s in the potential range 0–1.2 V.Further,this value was found to be nearly three times higher than that of pure h-Ru O.An asymmetric supercapacitor(AS) device was fabricated by employing h-Ru O/MWCNT as the positive electrode and activated carbon as the negative electrode.The device exhibited Cs of 61.8 F/g at a scan rate of 2 m V/s.Further,the device showed excellent long term stability for 20,000 cycles with 88% capacitance retention at a high current density of 25 A/g.
文摘We elaborate an error budget for the long-term accuracy of IGS(International Global Navigation Satellite System Service) polar motion estimates, concluding that it is probably about 25-30 μas(1-sigma)overall, although it is not possible to quantify possible contributions(mainly annual) that might transfer directly from aliases of subdaily rotational tide errors. The leading sources are biases arising from the need to align daily, observed terrestrial frames, within which the pole coordinates are expressed and which are continuously deforming, to the secular, linear international reference frame. Such biases are largest over spans longer than about a year. Thanks to the very large number of IGS tracking stations, the formal covariance errors are much smaller,around 5 to 10 μas. Large networks also permit the systematic frame-related errors to be more effectively minimized but not eliminated. A number of periodic errors probably also influence polar motion results, mainly at annual, GPS(Global Positioning System) draconitic, and fortnightly periods, but their impact on the overall error budget is unlikely to be significant except possibly for annual tidal aliases. Nevertheless, caution should be exercised in interpreting geophysical excitations near any of the suspect periods.
文摘Mathematical investigations of the dynamic response of buried systems to thermal and/or electromagnetic stimulation continues to be of great importance. The size of such systems can range from the microelectronic scale to large underground structures. Stimulation can occur from unwanted electromagnetic signals entering the buried system, and for assessing the operating state of a buried system that is not usually physically accessible. In both cases detecting damage or status can be accomplished by examining the time dependence of the resultant surface temperature. This study shows how to determine surface temperature for a hypothetical thermal-plus-systems using a combination of Fourier-space and Laplace-time transform techniques. The hypothetical model can be generalized from scaling the relevant relationships.
基金supported by the Naval Research Board(NRB)Project Number:NRB-290/MAT/12-13
文摘Here we demonstrate the fabrication, electrochemical performance and application of an asymmetric supercapacitor (AS) device constructed with ss-Ni(OH)(2)/MWCNTs as positive electrode and KOH activated honeycomb-like porous carbon (K-PC) derived from banana fibers as negative electrode. Initially, the electrochemical performance of hydrothermally synthesized ss-Ni(OH)(2)/MWCNTs nanocomposite and K-PC was studied in a three-electrode system using 1 M KOH. These materials exhibited a specific capacitance (Cs) of 1327 Fig and 324 F/g respectively at a scan rate of 10 mV/s. Further, the AS device i.e., ss-Ni(OH)(2)/MWCNTs// K-PC in 1 M KOH solution, demonstrated a Cs of 156 F/g at scan rate of 10 mV/s in a broad cell voltage of 0-2.2 V. The device demonstrated a good rate capability by maintaining a Cs of 59 F/g even at high current density (25 A/g). The device also offered high energy density of 63 Wh/kg with maximum power density of 5.2 kW/kg. The AS device exhibited excellent cycle life with 100% capacitance retention at 5000th cycle at a high current density of 25 A/g. Two AS devices connected in series were employed for powering a pair of LEDs of different colors and also a mini fan. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
文摘The smart grid is the next generation of power and distribution systems. The integration of advanced network, communications, and computing techniques allows for the enhancement of efficiency and reliability. The smart grid interconnects the flow of information via the power line, intelligent metering, renewable and distributed energy systems, and a monitoring and controlling infrastructure. For all the advantages that these components come with, they remain at risk to a spectrum of physical and digital attacks. This paper will focus on digital vulnerabilities within the smart grid and how they may be exploited to form full fledged attacks on the system. A number of countermeasures and solutions from the literature will also be reported, to give an overview of the options for dealing with such problems. This paper serves as a triggering point for future research into smart grid cyber security.
基金Supported by grants from the Office of Naval Research under the ILIR program though David Taylor Model Basin, Carderock Division, NSWCCD, and NRL Coastal Ocean Physics Remote Sensing Advanced Research Initiative.
文摘Wave-wave interactions cause energy cascades. These are the most important processes in the upper ocean because they govern wave-growth and dissipation. Through indirect cascades, wave en- ergy is transferred from higher frequencies to lower frequencies, leading to wave growth. In direct cas- cades, energy is transferred from lower frequencies to the higher frequencies, which causes waves to break, and dissipation of wave energy. However, the evolution and origin of energy cascade processes are still not fully understood. In particular, for example, results from a recent theory (Kalmykov, 1998) sug- gest that the class I wave-wave interactions (defined by situations involving 4-, 6-, 8-, etc, even numbers of resonantly interacting waves) cause indirect cascades, and Class II wave-wave interactions (involving, 5-, 7-, 9-, etc, .., odd numbers of waves) cause direct cascades. In contrast to this theory, our model results indicate the 4-wave interactions can cause significant transfer of wave energy through both direct and in- direct cascades. In most situations, 4-wave interactions provide the major source of energy transfer for both direct cascades and indirect cascades, except when the wave steepness is larger than 0.28. Our model results agree well with wave measurements, obtained using field buoy data (for example, Lin and Lin, 2002). In particular, in these observations, asymmetrical wave-wave interactions were studied. They found that direct and indirect cascades both are mainly due to the 4-wave interactions when wave steep- ness is less than 0.3.
基金sponsored by ONR Grants PE 0602435N and N000140310739partially supported by the Japan Agency for Marine-Earth Science and Technology
文摘The barotropic and baroclinic disturbances axisymmetrized by the barotropic basic vortex are examined in an idealized modeling framework consisting of two layers.Using a Wentzel-Kramers-Brillouin approach,the radial propagation of a baroclinic disturbance is shown to be slower than a barotropic disturbance,resulting in a slower linear axisymmetrization for baroclinic disturbances.The slower-propagating baroclinic waves also cause more baroclinic asymmetric kinetic energy to be transferred directly to the barotropic symmetric vortex than from barotropic disturbances,resulting in a faster axisymmetrization process in the nonlinear baroclinic wave case than in the nonlinear barotropic wave case.
基金supported by ONR Grants N000140310739 and PE 0602435Npartially sponsored by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
文摘The effect of baroclinicity on vortex axisymmetrization is examined within a two-layer dynamical model.Three basic state vortices are constructed with varying degrees of baroclinicity:(i) barotropic,(ii) weak baroclinic,and (iii) strong baroclinic.The linear and nonlinear evolution of wavenumber-2 baroclinic disturbances are examined in each of the three basic state vortices.The results show that the radial propagating speed of the vortex Rossby wave at the lower level is larger with the stronger baroclinicity,resulting in a faster linear axisymmetrization process in the stronger baroclinic vortex.It is found that the nonlinear axisymmetrization process takes the longest time in the strongest baroclinic vortex among the three different basic vortices due to the weaker kinetic energy transfer from asymmetric to symmetric circulations at the lower level.A major finding in this study is that the same initial asymmetric perturbation can have different effects on symmetric vortices depending on the initial vortex baroclinicity.In numerical weather prediction models,this implies that there exists a sensitivity of the subsequent structural and intensity change solely due to the specification of the initial vertical shear of the tropical cyclone vortex.
文摘The ability to localize moving objects within the environment is critical for autonomous robotic systems. This paper describes a moving object detection and localization system using multiple robots equipped with inexpensive optic flow sensors. We demonstrate an architecture capable of detecting motion along a plane by collecting three sets of one-dimensional optic flow data. The detected object is then localized with respect to each of the robots in the system.
基金The authors would like to acknowledge National Facility for Texture and OIM(A DST-IRPHA project),IIT Mumbai for XRD and EBSD measurements.One of the authors VDH would like to acknowledge Science and Engineering Research Board(SERB)for financial assistance(EEQ/2016/000422)to carry out project work.
文摘Friction stir processing and post process artificial ageing was successfully carried out on AA7075 with and without reinforcement of SiC particles producing defect free processed zone with uniform distribution of filler material.Effect of SiC particle reinforcement and artificial ageing times on the microstructural modifications was characterized using optical and electron microscopy,electron backscattered diffraction and X-Ray diffraction.Hardness,impact and wear tests were carried out to investigate mechanical behaviour before and after processing.Reinforcement of SiC particles during FSP and subsequent age hardening treatment brought about nearly twofold increase in hardness and impact toughness values by the combined effect of grain refinement,Zener pinning,dispersion strengthening and precipitation hardening.Significant improvement in wear resistance in terms of wear loss was also observed after processing compared to the reference material AA7075-T6.Fractured surface of post FSP age hardened AA7075 alloy exhibited features of ductile fracture during Charpy impact test.