Increasing winter wheat seedling growth would make it a better winter cover crop. Gibberellic acid (GA3) seed treatment may accomplish this by stimulating stem growth. A bioassay, mimicking field conditions, could det...Increasing winter wheat seedling growth would make it a better winter cover crop. Gibberellic acid (GA3) seed treatment may accomplish this by stimulating stem growth. A bioassay, mimicking field conditions, could determine the relative sensitivity of conventional and semi-dwarf cultivars. In growth chambers set for cool (10℃/4℃) and warm (21℃/4℃) conditions, wheat seeds were treated with 0 and 125 to 16,000 ppm GA3. The cultivars Goodstreak (tall or conventional) and Wesley (semi-dwarf) were compared as standards. Emergence and plant height were measured. “Goodstreak” showed a significant growth promotion at 500 ppm GA3 when seeds were dipped and 2000 ppm when GA3 was applied in-furrow under both temperature regimes. “Wesley” in general required the same or a higher dose of GA3. Separately, the seeds of nine other cultivars were treated with GA3 as the standards. Based on maximum height promotion, the most sensitive cultivars under cool conditions were Goodstreak, Harry, Millenium, and Wahoo;under warm conditions, the most sensitive cultivars were Alliance, Goodstreak, Jagalene, and Millenium. In general, the least GA3 sensitive cultivars were Arrowsmith, Scout66, and Wesley. “Buckskin” and “InfinityCL” were intermediate. The rye cultivar Rymin also was tested and showed less sensitivity to GA3 than “Goodstreak”. When 6 benzyladenine (6BA) with GA3 was applied to “Goodstreak” and “Wesley” seed, emergence, plant height and weight, and tiller formation were reduced. Wheat cultivars will respond to GA3 and differ in the amount of GA3 needed. The results of this growth chamber study will guide subsequent field trials.展开更多
Winter wheat (Triticum aestivum) planting in Nebraska is recommended for mid Sep but summer crops are often harvested around Oct 1. Also, weather may delay planting. Could gibberellic acid (GA3), a growth stimulant, o...Winter wheat (Triticum aestivum) planting in Nebraska is recommended for mid Sep but summer crops are often harvested around Oct 1. Also, weather may delay planting. Could gibberellic acid (GA3), a growth stimulant, overcome the delayed seedling growth from late planting? Irrigated field trials were planted from 2005 to 2010 applying GA3 to wheat seed of cvs. Goodstreak and Wesley. In 2005, dip, spray and furrow GA3 applications to seed were tested. Dip and spray gave similar results. Furrow application was calculated too costly. Further tests used seed dips. In 2006 to 2008 planting, wheat was planted about 15 Sep, 1 Oct and 15 Oct. Trials planted in 2007 and 2008 included winter rye (Secale cereale) cv. Rymin. Heights in mid Nov showed a reduction with later planting. When planted about 1 Oct and 15 Oct, the delayed growth of Goodstreak, compared to planting two weeks earlier, was fully overcome by GA3 at 250 ppm. For Wesley, 1000 ppm GA3 was needed to nearly overcome later planting. Rymin rye gave an intermediate response between the two wheat cultivars. Spring and summer heights were not affected by GA3. Spring biomass, yield and harvested seed germination showed no GA3 effect. In later trials (planted in 2009 and 2010), the cytokinin 6-benzyl adenine (6BA) was added to GA3 to stimulate tiller formation. In the 1st year, 6BA at 2000 ppm depressed height, weight and yield without tiller promotion. Repeating the trial with lower rates (31 - 125 ppm 6BA) did not offer an additional advantage to GA3. The results indicate that seed application of GA3 can overcome delayed growth resulting from delayed planting of winter wheat and rye under irrigation.展开更多
Does the endosperm pose a mechanical resistance on embryonic axis (radicle) growth for lettuce seed (achene) germination? To aid answering this question, the cell wall degrading enzyme, carboxymethylcellulase (CMCase)...Does the endosperm pose a mechanical resistance on embryonic axis (radicle) growth for lettuce seed (achene) germination? To aid answering this question, the cell wall degrading enzyme, carboxymethylcellulase (CMCase) was extracted and assayed from lettuce seeds imbibed for 0 to 12 h, prior to germination. Measuring the loss of viscosity of carboxymethylcellulose, CMCase activity was high in dry seeds, low after 6 h of imbibition, high after 9 and 10 h, and then reduced again after 12 h. Fractions from Sephadex columns showed CMCase activity in three peaks labeled E1, E2, E3. The greatest change in CMCase activity during imbibition was with E3 (molecular weight of about 40,000 Daltons) and some reduction in E2 (molecular weight about 280,000). The RNA synthesis inhibitor, 6-methyl purine, eliminated CMCase activity when present from 4.5 to 7 h of imbibition and the protein synthesis inhibitor, cycloheximide, eliminated CMCase activity when present between 5.5 and 9 h. Imbibition in darkness lowered CMCase activity while 15 min of light at 3.5 h restored it and 30 min of far-red light at 3 h eliminated it. Increasing the imbibition temperature to 35°C under light reduced activity while under darkness, activity was eliminated under 24°C and 35°C. CMCase activity was localized in the endosperm surrounding the embryonic axis (micropylar end) of 9 h imbibed seeds. These observations showed that CMCase was active in degrading the cell wall in the endosperm surrounding the radicle, weakening it, prior to radicle protrusion so that the radicle remains undamaged.展开更多
文摘Increasing winter wheat seedling growth would make it a better winter cover crop. Gibberellic acid (GA3) seed treatment may accomplish this by stimulating stem growth. A bioassay, mimicking field conditions, could determine the relative sensitivity of conventional and semi-dwarf cultivars. In growth chambers set for cool (10℃/4℃) and warm (21℃/4℃) conditions, wheat seeds were treated with 0 and 125 to 16,000 ppm GA3. The cultivars Goodstreak (tall or conventional) and Wesley (semi-dwarf) were compared as standards. Emergence and plant height were measured. “Goodstreak” showed a significant growth promotion at 500 ppm GA3 when seeds were dipped and 2000 ppm when GA3 was applied in-furrow under both temperature regimes. “Wesley” in general required the same or a higher dose of GA3. Separately, the seeds of nine other cultivars were treated with GA3 as the standards. Based on maximum height promotion, the most sensitive cultivars under cool conditions were Goodstreak, Harry, Millenium, and Wahoo;under warm conditions, the most sensitive cultivars were Alliance, Goodstreak, Jagalene, and Millenium. In general, the least GA3 sensitive cultivars were Arrowsmith, Scout66, and Wesley. “Buckskin” and “InfinityCL” were intermediate. The rye cultivar Rymin also was tested and showed less sensitivity to GA3 than “Goodstreak”. When 6 benzyladenine (6BA) with GA3 was applied to “Goodstreak” and “Wesley” seed, emergence, plant height and weight, and tiller formation were reduced. Wheat cultivars will respond to GA3 and differ in the amount of GA3 needed. The results of this growth chamber study will guide subsequent field trials.
文摘Winter wheat (Triticum aestivum) planting in Nebraska is recommended for mid Sep but summer crops are often harvested around Oct 1. Also, weather may delay planting. Could gibberellic acid (GA3), a growth stimulant, overcome the delayed seedling growth from late planting? Irrigated field trials were planted from 2005 to 2010 applying GA3 to wheat seed of cvs. Goodstreak and Wesley. In 2005, dip, spray and furrow GA3 applications to seed were tested. Dip and spray gave similar results. Furrow application was calculated too costly. Further tests used seed dips. In 2006 to 2008 planting, wheat was planted about 15 Sep, 1 Oct and 15 Oct. Trials planted in 2007 and 2008 included winter rye (Secale cereale) cv. Rymin. Heights in mid Nov showed a reduction with later planting. When planted about 1 Oct and 15 Oct, the delayed growth of Goodstreak, compared to planting two weeks earlier, was fully overcome by GA3 at 250 ppm. For Wesley, 1000 ppm GA3 was needed to nearly overcome later planting. Rymin rye gave an intermediate response between the two wheat cultivars. Spring and summer heights were not affected by GA3. Spring biomass, yield and harvested seed germination showed no GA3 effect. In later trials (planted in 2009 and 2010), the cytokinin 6-benzyl adenine (6BA) was added to GA3 to stimulate tiller formation. In the 1st year, 6BA at 2000 ppm depressed height, weight and yield without tiller promotion. Repeating the trial with lower rates (31 - 125 ppm 6BA) did not offer an additional advantage to GA3. The results indicate that seed application of GA3 can overcome delayed growth resulting from delayed planting of winter wheat and rye under irrigation.
文摘Does the endosperm pose a mechanical resistance on embryonic axis (radicle) growth for lettuce seed (achene) germination? To aid answering this question, the cell wall degrading enzyme, carboxymethylcellulase (CMCase) was extracted and assayed from lettuce seeds imbibed for 0 to 12 h, prior to germination. Measuring the loss of viscosity of carboxymethylcellulose, CMCase activity was high in dry seeds, low after 6 h of imbibition, high after 9 and 10 h, and then reduced again after 12 h. Fractions from Sephadex columns showed CMCase activity in three peaks labeled E1, E2, E3. The greatest change in CMCase activity during imbibition was with E3 (molecular weight of about 40,000 Daltons) and some reduction in E2 (molecular weight about 280,000). The RNA synthesis inhibitor, 6-methyl purine, eliminated CMCase activity when present from 4.5 to 7 h of imbibition and the protein synthesis inhibitor, cycloheximide, eliminated CMCase activity when present between 5.5 and 9 h. Imbibition in darkness lowered CMCase activity while 15 min of light at 3.5 h restored it and 30 min of far-red light at 3 h eliminated it. Increasing the imbibition temperature to 35°C under light reduced activity while under darkness, activity was eliminated under 24°C and 35°C. CMCase activity was localized in the endosperm surrounding the embryonic axis (micropylar end) of 9 h imbibed seeds. These observations showed that CMCase was active in degrading the cell wall in the endosperm surrounding the radicle, weakening it, prior to radicle protrusion so that the radicle remains undamaged.