期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
Multiscale process systems engineering—analysis and design of chemical and energy systems from molecular design up to process optimization 被引量:1
1
作者 Teng Zhou Kai Sundmacher 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第2期137-140,共4页
As indicated by Grossmann and Westerberg[1],a process system can be generally decomposed into hierarchical levels or scales at which different physical and/or chemical phenomena take place(see Fig.1).The first step of... As indicated by Grossmann and Westerberg[1],a process system can be generally decomposed into hierarchical levels or scales at which different physical and/or chemical phenomena take place(see Fig.1).The first step of multiscale process modeling is to connect the molecular level with the phase level,where the main task is to model and predict the properties of fluid mixtures based on the atomic-or molecular-level information.Typically,quantum chemical(QC)computation,molecular simulation,and equations of state are used to provide such predictions.Recently,due to the ever-increasing number of available data and fast development of cheminformatics and machine learning tools,data-driven descriptor models have been developed and widely used for property predictions[2]. 展开更多
关键词 PROCESS CHEMICAL OPTIMIZATION
原文传递
A Perspective on Smart Process Manufacturing Research Challenges forProcess Systems Engineers 被引量:9
2
作者 Ian David Lockhart Bogle 《Engineering》 SCIE EI 2017年第2期161-165,共5页
The challenges posed by smart manufacturing for the process industries and for process systems engineering(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wid... The challenges posed by smart manufacturing for the process industries and for process systems engineering(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, hut benchmarking would give greater confidence. Technical challenges confrontingprocess systems engineers in developing enabling tools and techniques are discussed regarding flexibilityand uncertainty, responsiveness and agility, robustness and security, the prediction of mixture propertiesand function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to driveagility will require tackling new challenges, such as how to ensure the consistency and confidentiality ofdata through long and complex supply chains. Modeling challenges also exist, and involve ensuring that allkey aspects are properly modeled, particularly where health, safety, and environmental concerns requireaccurate predictions of small but critical amounts at specific locations. Environmental concerns will requireus to keep a closer track on all molecular species so that they are optimally used to create sustainablesolutions. Disruptive business models may result, particularly from new personalized products, but that isdifficult to predict. 展开更多
关键词 SMART MANUFACTURING Process systems engineering UNCERTAINTY FLEXIBILITY Optimization MODEL-BASED control
在线阅读 下载PDF
Computer-aided ionic liquid design for alkane/cycloalkane extractive distillation process 被引量:9
3
作者 Zhen Song Xinxin Li +5 位作者 He Chao Fan Mo Teng Zhou Hongye Cheng Lifang Chen Zhiwen Qi 《Green Energy & Environment》 SCIE CSCD 2019年第2期154-165,共12页
A computer-aided ionic liquid design(CAILD) study is presented for the frequently encountered alkane/cycloalkane separations in petrochemical industry. Exhaustive experimental data are first collected to extend the UN... A computer-aided ionic liquid design(CAILD) study is presented for the frequently encountered alkane/cycloalkane separations in petrochemical industry. Exhaustive experimental data are first collected to extend the UNIFAC-IL model for this system, where the proximity effect in alkanes and cycloalkanes is considered specifically by defining distinct groups. The thermodynamic performances of a large number of ILs for 4 different alkane/cycloalkane systems are then compared to select a representative example of such separations. By applying n-heptane/methylcyclohexane extractive distillation as a case study, the CAILD task is cast as a mixed-integer nonlinear programming(MINLP) problem based on the obtained task-specific UNIFAC-IL model and two semi-empirical models for IL physical properties. The top 5 IL candidates determined by solving the MINLP problem are subsequently introduced into Aspen Plus for process simulation and economic analysis, which finally identify 1-hexadecyl-methylpiperidinium tricyanomethane([C_(16)MPip][C(CN)_3]) as the best entrainer for this separation. 展开更多
关键词 CAILD Alkane/cycloalkane extractive DISTILLATION UNIFAC-IL MINLP Process performance and economics
在线阅读 下载PDF
Hybrid Data-Driven and Mechanistic Modeling Approaches for Multiscale Material and Process Design 被引量:8
4
作者 Teng Zhou Rafiqul Gani Kai Sundmacher 《Engineering》 SCIE EI 2021年第9期1231-1238,共8页
The world’s increasing population requires the process industry to produce food,fuels,chemicals,and consumer products in a more efficient and sustainable way.Functional process materials lie at the heart of this chal... The world’s increasing population requires the process industry to produce food,fuels,chemicals,and consumer products in a more efficient and sustainable way.Functional process materials lie at the heart of this challenge.Traditionally,new advanced materials are found empirically or through trial-and-error approaches.As theoretical methods and associated tools are being continuously improved and computer power has reached a high level,it is now efficient and popular to use computational methods to guide material selection and design.Due to the strong interaction between material selection and the operation of the process in which the material is used,it is essential to perform material and process design simultaneously.Despite this significant connection,the solution of the integrated material and process design problem is not easy because multiple models at different scales are usually required.Hybrid modeling provides a promising option to tackle such complex design problems.In hybrid modeling,the material properties,which are computationally expensive to obtain,are described by data-driven models,while the well-known process-related principles are represented by mechanistic models.This article highlights the significance of hybrid modeling in multiscale material and process design.The generic design methodology is first introduced.Six important application areas are then selected:four from the chemical engineering field and two from the energy systems engineering domain.For each selected area,state-ofthe-art work using hybrid modeling for multiscale material and process design is discussed.Concluding remarks are provided at the end,and current limitations and future opportunities are pointed out. 展开更多
关键词 DATA-DRIVEN Surrogate model Machine learning Hybrid modeling Material design Process optimization
在线阅读 下载PDF
Optimal Design of Water Utilization Network with Energy Integration in Process Industries 被引量:6
5
作者 都健 孟小琼 +3 位作者 杜红彬 俞红梅 樊希山 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期247-255,共9页
Effective utilization of water and energy is the key factor of sustainable development in process industries, and also an important science and technology problem to be solved in systems engineering. In this paper,two... Effective utilization of water and energy is the key factor of sustainable development in process industries, and also an important science and technology problem to be solved in systems engineering. In this paper,two new methods of optimal design of water utilization network with energy integration in process industries are presented, that is, stepwise and simultaneous optimization methods. They are suitable for both single contaminant and multi-contaminant systems, and the integration of energy can be carried out in the whole process system, not only limited in water network, so that energy can be utilized effectively. The two methods are illustrated by case study. 展开更多
关键词 utilization of water and energy MINIMIZATION stepwise optimization method simultaneous optimization method
在线阅读 下载PDF
Synthesis of indirect work exchange networks considering both isothermal and adiabatic process together with exergy analysis 被引量:2
6
作者 Yu Zhuang Linlin Liu +1 位作者 Lei Zhang Jian Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第8期1644-1652,共9页
In this paper, an efficient methodology for synthesizing the indirect work exchange networks(WEN) considering isothermal process and adiabatic process respectively based on transshipment model is first proposed. In co... In this paper, an efficient methodology for synthesizing the indirect work exchange networks(WEN) considering isothermal process and adiabatic process respectively based on transshipment model is first proposed. In contrast with superstructure method, the transshipment model is easier to obtain the minimum utility consumption taken as the objective function and more convenient for us to attain the optimal network configuration for further minimizing the number of units. Different from division of temperature intervals in heat exchange networks,different pressure intervals are gained according to the maximum compression/expansion ratio in consideration of operating principles of indirect work exchangers and the characteristics of no pressure constraints for stream matches. The presented approach for WEN synthesis is a linear programming model applied to the isothermal process, but for indirect work exchange networks with adiabatic process, a nonlinear programming model needs establishing. Additionally, temperatures should be regarded as decision variables limited to the range between inlet and outlet temperatures in each sub-network. The constructed transshipment model can be solved first to get the minimum utility consumption and further to determine the minimum number of units by merging the adjacent pressure intervals on the basis of the proposed merging methods, which is proved to be effective through exergy analysis at the level of units structures. Finally, two cases are calculated to confirm it is dramatically feasible and effective that the optimal WEN configuration can be gained by the proposed method. 展开更多
关键词 Work exchange networks Transshipment model Adiabatic process Exergy analysis Isothermal process Work cascade
在线阅读 下载PDF
Evaluation of COSMO-RS for solid–liquid equilibria prediction of binary eutectic solvent systems 被引量:2
7
作者 Zhen Song Jingwen Wang Kai Sundmacher 《Green Energy & Environment》 SCIE CSCD 2021年第3期371-379,共9页
For the design of eutectic solvents(ESs,usually also known as deep eutectic solvents),the prediction of the solid–liquid equilibria(SLE)between candidate components is of primary relevance.In the present work,the SLE... For the design of eutectic solvents(ESs,usually also known as deep eutectic solvents),the prediction of the solid–liquid equilibria(SLE)between candidate components is of primary relevance.In the present work,the SLE prediction of binary eutectic solvent systems by the COSMO-RS model is systematically evaluated,thereby examining the applicability of this method for ES design.Experimental SLE of such systems are first collected exhaustively from the literature,following which COSMO-RS SLE calculations are accordingly carried out.By comparing the experimental and predicted eutectic points(eutectic temperature and eutectic composition)of the involved systems,the effects of salt component conformer and COSMO-RS parameterization as well as the applicability for different types of components(specifically the second component paired with the first salt one)are identified.The distinct performances of COSMO-RS SLE prediction for systems involving different types of components are further interpreted from the non-ideality and fusion enthalpy point of view. 展开更多
关键词 Eutectic solvents Solid-liquid equilibria prediction COSMO-RS Calculation options Applicability for component types
在线阅读 下载PDF
Nonlinear Model-Based Process Operation under UncertaintyUsing Exact Parametric Programming 被引量:1
8
作者 Vassilis M. Charitopoulos Lazaros G. Papageorgiou Vivek Dua 《Engineering》 SCIE EI 2017年第2期202-213,共12页
In the present work, two new, (multi-)parametric programming (mp-P)-inspired algorithms for the solutionof mixed-integer nonlinear programming (MINLP) problems are developed, with their main focus being onproces... In the present work, two new, (multi-)parametric programming (mp-P)-inspired algorithms for the solutionof mixed-integer nonlinear programming (MINLP) problems are developed, with their main focus being onprocess synthesis problems. The algorithms are developed for the special case in which the nonlinearitiesarise because of logarithmic terms, with the first one being developed for the deterministic case, and thesecond for the parametric case (p-MINLP). The key idea is to formulate and solve the square system of thefirst-order Karush-Kuhn-Tucker (KKT) conditions in an analytical way, by treating the binary variables and/or uncertain parameters as symbolic parameters. To this effect, symbolic manipulation and solution tech-niques are employed. In order to demonstrate the applicability and validity of the proposed algorithms, twoprocess synthesis case studies are examined. The corresponding solutions are then validated using state-of-the-art numerical MINLP solvers. For p-MINLP, the solution is given by an optimal solution as an explicitfunction of the uncertain parameters. 展开更多
关键词 PARAMETRIC PROGRAMMING Uncertainty Process synthesis MIXED-INTEGER nonlinear PROGRAMMING SYMBOLIC MANIPULATION
在线阅读 下载PDF
A Framework for the Systematic Design of Hybrid Separation Processe 被引量:1
9
作者 Wolfgang Marquardt Sven Kossack Korhjnian Kraemer 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第3期333-342,共10页
The design of optimal separation flow sheets for multi-component mixtures is still not a solved problem This is especially the case when non-ideal or azeotropic mixtures or hybrid separation processes are considered. ... The design of optimal separation flow sheets for multi-component mixtures is still not a solved problem This is especially the case when non-ideal or azeotropic mixtures or hybrid separation processes are considered. We review recent developments in this field and present a systematic framework for the design of separation flow sheets. This framework proposes a three-step approach. In the first step different flow sheets are generated. In the second step these alternative flow sheet structures are evaluated with shortcut methods. In the third step a rigorous mixed-integer nonlinear programming (MINLP) optimization of the entire flow sheet is executed to determine the best alternative. Since a number of alternative flow sheets have already been eliminated, only a few optimization runs are necessary in this final step. The whole framework thus allows the systematic generation and evaluation of separation processes and is illustrated with the case study of the separation of ethanol and water. 展开更多
关键词 process synthesis distillation design rectification body method mixed-integer nonlinear programming
在线阅读 下载PDF
Smart Process Manufacturing for Formulated Products 被引量:1
10
作者 James Litster Ian David L Bogle 《Engineering》 SCIE EI 2019年第6期1003-1009,共7页
We outline the smart manufacturing challenges for formulated products, which are typically multicom- ponent, structured, and multiphase. These challenges predominate in the food, pharmaceuticals, agricul- tural and sp... We outline the smart manufacturing challenges for formulated products, which are typically multicom- ponent, structured, and multiphase. These challenges predominate in the food, pharmaceuticals, agricul- tural and specialty chemicals, energy storage and energetic materials, and consumer goods industries, and are driven by fast-changing customer demand and, in some cases, a tight regulatory framework. This paper discusses progress in smart manufacturing namely, digitalization and the use of large data- sets with predictive models and solution- nding algorithms in these industries. While some progress has been achieved, there is a strong need for more demonstration of model-based tools on realistic prob- lems in order to demonstrate their bene ts and highlight any systemic weaknesses. 展开更多
关键词 Smart manufacturing Formulated products Pharmaceuticals MODELING Supply chain integration UNCERTAINTY
在线阅读 下载PDF
Simultaneous synthesis of sub and above-ambient heat exchanger networks including expansion process based on an enhanced superstructure model
11
作者 Yu Zhuang Rui Yang +2 位作者 Lei Zhang Jian Du Shengqiang Shen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第5期1344-1356,共13页
Synthesis of heat exchanger networks including expansion process is a complex task due to the involvement of both heat and work.A stream that expands through expanders can produce work and cold load,while expansion th... Synthesis of heat exchanger networks including expansion process is a complex task due to the involvement of both heat and work.A stream that expands through expanders can produce work and cold load,while expansion through valves barely affects heat integration.In addition,expansion through expanders at higher temperature produces more work,but consumes more hot utility.Therefore,there is a need to weigh work production and heat consumption.To this end,an enhanced stage-wise superstructure is proposed that involves synchronous optimization of expander/valve placement and heat integration for each pressure-change sub-stream in stages.A mixed-integer nonlinear programming(MINLP)model is established for synthesizing sub and aboveambient heat exchanger networks with multi-stream expansion,which explicitly considers the optimized selection of end-heaters and end-coolers to adjust temperature requirement.Our proposed method can commendably achieve the optimal selection of expanders and valves in a bid for minimizing exergy consumption and total annual cost.Four example studies are conducted with two distinct objective function(minimization of exergy consumption and total annual cost,respectively)to illustrate the feasibility and efficacy of the proposed method. 展开更多
关键词 SUPERSTRUCTURE Heat exchanger networks EXPANSION EXERGY ECONOMICS Mathematical modeling
在线阅读 下载PDF
Dynamic Optimization of Bioprocesses
12
作者 George Koumpouras Cleo Kontoravdi 《Applied Mathematics》 2012年第10期1487-1495,共9页
The Bioprocessing industry delivers high-value protein-based pharmaceutical products produced using microbial or animal cells. Animal cell culture, the only method currently available for the production of proteins wi... The Bioprocessing industry delivers high-value protein-based pharmaceutical products produced using microbial or animal cells. Animal cell culture, the only method currently available for the production of proteins with human-like post-translational modifications, is an expensive and labor-intensive process, as animal cells have complex nutrient requirements. Optimization studies have typically been limited to experimental studies, although there has recently been increased interest in combined experimental and computational approaches. In this work, we present the results of a dynamic optimization approach to improving animal cell bioprocesses. We have based this on a model validated over batch and fed-batch conditions and have examined four possible objective functions. Our results indicate that the maximization of the product concentration or the integral of viable cell concentration over time give equivalent results and can improve the product titer up to 70% over non-optimized fed-batch cultures. 展开更多
关键词 ANIMAL CELL CULTURE ANTIBODY PRODUCTION Dynamic Optimization
在线阅读 下载PDF
Synthesis of flexible inter-plant heat exchanger networks:A decomposition method considering intermedium fluid circles
13
作者 Ran Tao Siwen Gu +1 位作者 Linlin Liu Jian Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第11期62-73,共12页
The traditional methods for synthesizing flexible heat exchanger networks(HENs)are not directly applicable to inter-plant HEN challenges,primarily due to the spread of system uncertainty across plants via intermedium ... The traditional methods for synthesizing flexible heat exchanger networks(HENs)are not directly applicable to inter-plant HEN challenges,primarily due to the spread of system uncertainty across plants via intermedium fluid circles.This complicates the synthesis process significantly.To tackle this issue,this study proposes a decomposed stepwise methodology to facilitate the flexible synthesis of the interplant HENs performing indirect heat integration.A decomposition strategy is proposed to divide the overall network into manageable sub-networks by dissecting the intermedium fluid circles.To address the variability in intermedium fluid temperatures,a temperature fluctuation analysis approach is developed and a heuristic rule is introduced to maintain the temperature feasibility of the intermedium fluids.To ensure adequate flexibility and cost-effectiveness of the designed networks,flexibility analysis and network retrofit steps are conducted through model-based optimization techniques.The efficacy of the method is demonstrated through two case studies,showing its potential in achieving the desired operational flexibility for inter-plant HENs. 展开更多
关键词 Inter-plant heat exchanger networks(HENs) Indirect heat integration Flexible synthesis Flexible analysis Decomposition method
在线阅读 下载PDF
RSscore:Reaction superiority learned from reaction mapping hypergraph
14
作者 Chenyang Xu Lijuan Guo +4 位作者 Kang Zhou Hai Yu Chaoliang Wei Fengqi Fan Lei Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期203-215,共13页
The selection of chemical reactions is directly related to the quality of synthesis pathways,so a reasonable reaction evaluation metric plays a crucial role in the design and planning of synthesis pathways.Since react... The selection of chemical reactions is directly related to the quality of synthesis pathways,so a reasonable reaction evaluation metric plays a crucial role in the design and planning of synthesis pathways.Since reaction conditions also need to be considered in synthesis pathway design,a reaction metric that combines reaction time,temperature,and yield is required for chemical reactions of different reaction agents.In this study,a chemical reaction graph descriptor which includes the atom-atom mapping relationship is proposed to effectively describe reactions.Then,through pre-training using graph contrastive learning and fine-tuning through supervised learning,we establish a model for generating the probability of reaction superiority(RSscore).Finally,to validate the effectiveness of the current evaluation index,RSscore is applied in two applications,namely reaction evaluation and synthesis routes analysis,which proves that the RSscore provides an important agents-considered evaluation criterion for computer-aided synthesis planning(CASP). 展开更多
关键词 Computer-aided synthesis planning Neural networks Reaction evaluation indicator Reaction graph Graph contractive learning
在线阅读 下载PDF
Accelerating Factor Xa inhibitor discovery with a de novo drug design pipeline
15
作者 Yujing Zhao Qilei Liu +3 位作者 Jian Du Qingwei Meng Liang Sun Lei Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期85-94,共10页
Small-molecule drugs are essential for maintaining human health. The objective of this study is to identify a molecule that can inhibit the Factor Xa protein and be easily procured. An optimization-based de novo drug ... Small-molecule drugs are essential for maintaining human health. The objective of this study is to identify a molecule that can inhibit the Factor Xa protein and be easily procured. An optimization-based de novo drug design framework, Drug CAMD, that integrates a deep learning model with a mixed-integer nonlinear programming model is used for designing drug candidates. Within this framework, a virtual chemical library is specifically tailored to inhibit Factor Xa. To further filter and narrow down the lead compounds from the designed compounds, comprehensive approaches involving molecular docking,binding pose metadynamics(BPMD), binding free energy calculations, and enzyme activity inhibition analysis are utilized. To maximize efficiency in terms of time and resources, molecules for in vitro activity testing are initially selected from commercially available portions of customized virtual chemical libraries. In vitro studies assessing inhibitor activities have confirmed that the compound EN300-331859shows potential Factor Xa inhibition, with an IC_(50)value of 34.57 μmol·L^(-1). Through in silico molecular docking and BPMD, the most plausible binding pose for the EN300-331859-Factor Xa complex are identified. The estimated binding free energy values correlate well with the results obtained from biological assays. Consequently, EN300-331859 is identified as a novel and effective sub-micromolar inhibitor of Factor Xa. 展开更多
关键词 Chemical product design Mathematical programming method Deep learning Binding affinity Factor Xa inhibitor
在线阅读 下载PDF
Big Data Creates New Opportunities for Materials Research: A Review on Methods and Applications of Machine Learning for Materials Design 被引量:31
16
作者 Teng Zhou Zhen Song Kai Sundmacher 《Engineering》 SCIE EI 2019年第6期1017-1026,共10页
Materials development has historically been driven by human needs and desires, and this is likely to con- tinue in the foreseeable future. The global population is expected to reach ten billion by 2050, which will pro... Materials development has historically been driven by human needs and desires, and this is likely to con- tinue in the foreseeable future. The global population is expected to reach ten billion by 2050, which will promote increasingly large demands for clean and high-ef ciency energy, personalized consumer prod- ucts, secure food supplies, and professional healthcare. New functional materials that are made and tai- lored for targeted properties or behaviors will be the key to tackling this challenge. Traditionally, advanced materials are found empirically or through experimental trial-and-error approaches. As big data generated by modern experimental and computational techniques is becoming more readily avail- able, data-driven or machine learning (ML) methods have opened new paradigms for the discovery and rational design of materials. In this review article, we provide a brief introduction on various ML methods and related software or tools. Main ideas and basic procedures for employing ML approaches in materials research are highlighted. We then summarize recent important applications of ML for the large-scale screening and optimal design of polymer and porous materials, catalytic materials, and energetic mate- rials. Finally, concluding remarks and an outlook are provided. 展开更多
关键词 Big data DATA-DRIVEN Machine learning Materials screening Materials design
在线阅读 下载PDF
Synthesis of Large-scale Multistream Heat Exchanger Networks Based on Stream Pseudo Temperature 被引量:14
17
作者 肖武 董宏光 +3 位作者 李欣强 姚平经 罗行 Wilfried Roetzel 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第5期574-583,共10页
Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tr... Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tribution value of a stream depends on its heat transfer film coefficient, cost per unit heat transfer area, actual tem-perature, and so on. In the determination of the suitable heat transfer temperature difference contribution values of the stream, the total annual cost of multistream heat exchanger network (MSHEN) is regarded as an objective func-tion, and genetic/simulated annealing algorithm (GA/SA) is adopted for optimizing the heat transfer temperature difference contribution values of the stream. The stream pseudo temperatures are subsequently obtained. On the ba-sis of stream pseudo temperature, optimized MSHEN can be attained by the temperature-enthalpy (T-H) diagram method. This approach is characterized with fewer decision variables and higher feasibility of solutions. The calcu-lation efficiency of GA/SA can be remarkably enhanced by this approach and more probability is shown in search-ing the global optimum solution. Hence this approach is presented for solving industrial-sized MSHEN which is difficult to deal by traditional algorithm. Moreover, in the optimization of stream heat transfer temperature differ-ence contribution values, the effects of the stream temperature, the heat transfer film coefficient, and the construc-tion material of heat exchangers are considered, therefore this approach can be used to optimize and design heat exchanger network (HEN) with unequal heat transfer film coefficients and different of construction materials. The performance of the proposed approach has been demonstrated with three examples and the obtained solutions are compared with those available in literatures. The results show that the large-scale MSHEN synthesis problems can be solved to obtain good solutions with the modest computational effort. 展开更多
关键词 multistream heat exchanger network pseudo temperature stream heat transfer temperature difference contribution value genetic algorithm simulated annealing algorithm
在线阅读 下载PDF
CFD Simulation of Propane Cracking Tube Using Detailed Radical Kinetic Mechanism 被引量:7
18
作者 张楠 邱彤 陈丙珍 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第12期1319-1331,共13页
In the radiant section of cracking furnace,the thermal cracking process is highly coupled with turbulent flow,heat transfer and mass transfer.In this paper,a three-dimensional simulation of propane pyrolysis reactor t... In the radiant section of cracking furnace,the thermal cracking process is highly coupled with turbulent flow,heat transfer and mass transfer.In this paper,a three-dimensional simulation of propane pyrolysis reactor tube is performed based on a detailed kinetic radical cracking scheme,combined with a comprehensive rigorous computational fluid dynamics(CFD)model.The eddy-dissipation-concept(EDC)model is introduced to deal with turbulence-chemistry interaction of cracking gas,especially for the multi-step radical kinetics.Considering the high aspect ratio and severe gradient phenomenon,numerical strategies such as grid resolution and refinement,stepping method and relaxation technique at different levels are employed to accelerate convergence.Large scale of radial nonuniformity in the vicinity of the tube wall is investigated.Spatial distributions of each radical reaction rate are first studied,and made it possible to identify the dominant elementary reactions.Additionally,a series of operating conditions including the feedstock feed rate,wall temperature profile and heat flux profile towards the reactor tubes are investigated.The obtained results can be used as scientific guide for further technical retrofit and operation optimization aiming at high conversion and selectivity of pyrolysis process. 展开更多
关键词 numerical simulation cracking tube computational fluid dynamics(CFD) detailed radical kinetics
在线阅读 下载PDF
Strategy for Synthesis of Flexible Heat Exchanger Networks Embedded with System Reliability Analysis 被引量:4
19
作者 依大科 韩志忠 +1 位作者 王克峰 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第7期742-753,共12页
System reliability can produce a strong influence on the performance of the heat exchanger network(HEN).In this paper,an optimization method with system reliability analysis for flexible HEN by genetic/simulated annea... System reliability can produce a strong influence on the performance of the heat exchanger network(HEN).In this paper,an optimization method with system reliability analysis for flexible HEN by genetic/simulated annealing algorithms(GA/SA) is presented.Initial flexible arrangements of HEN is received by pseudo-temperature enthalpy diagram.For determining system reliability of HEN,the connections of heat exchangers(HEXs) and independent subsystems in the HEN are analyzed by the connection sequence matrix(CSM),and the system reliability is measured by the independent subsystem including maximum number of HEXs in the HEN.As for the HEN that did not meet system reliability,HEN decoupling is applied and the independent subsystems in the HEN are changed by removing decoupling HEX,and thus the system reliability is elevated.After that,heat duty redistribution based on the relevant elements of the heat load loops and HEX areas are optimized in GA/SA.Then,the favorable network configuration,which matches both the most economical cost and system reliability criterion,is located.Moreover,particular features belonging to suitable decoupling HEX are extracted from calculations.Corresponding numerical example is presented to verify that the proposed strategy is effective to formulate optimal flexible HEN with system reliability measurement. 展开更多
关键词 flexible heat exchanger network synthesis system reliability network decoupling independent subsystem
在线阅读 下载PDF
Heat exchanger network synthesis integrated with flexibility and controllability 被引量:3
20
作者 Siwen Gu Linlin Liu +3 位作者 Lei Zhang Yiyuan Bai Shaojing Wang Jian Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1474-1484,共11页
Over the last three decades,flexibility and controllability considerations for heat exchanger networks(HENs)have received great attention,respectively.However,they should be simultaneously incorporated in HEN synthesi... Over the last three decades,flexibility and controllability considerations for heat exchanger networks(HENs)have received great attention,respectively.However,they should be simultaneously incorporated in HEN synthesis to allow the economic performance to be achievable in a practical operating environment.This paper proposes a method for simultaneous synthesis of flexible and controllable HEN by considering their coupling.The key idea is to add the bypasses with optimized initial fractions and positions to explore such coupling,and consequently enabling HENs to be operated successfully over a range of disturbance variations.These are implemented by identifying and quantifying disturbance propagations,and then examining the sensitivity of bypasses to the entire HEN.In this way,the superstructurebased mixed integer non-linear programming(MINLP)with objective function of minimizing the total annual cost is formulated.A case study is used to demonstrate the application of the proposed method.Quantitative measures and dynamic simulation show the ability to provide the satisfactory flexibility and controllability of the obtained HEN. 展开更多
关键词 HEAT EXCHANGER networks FLEXIBILITY CONTROLLABILITY COUPLING Synthesis
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部