期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Effects of nanopores and sulfur doping on hierarchically bunched carbon fibers to protect lithium metal anode 被引量:5
1
作者 Ji In Jung Sunwoo Park +3 位作者 Son Ha Se Youn Cho Hyoung-Joon Jin Young Soo Yun 《Carbon Energy》 CAS 2021年第5期784-794,共11页
Studies on three-dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes(LMAs).However,there is still insufficient evidence for a k... Studies on three-dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes(LMAs).However,there is still insufficient evidence for a key factor to achieve their high electrochemical performance.Here,the effects of nanopores and sulfur doping on carbon-based nanoporous host(CNH)electrode materials for LMAs were investigated using natural polymer-derived CNHs.Homogeneous pore-filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis,where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency(CE)of~99.4%and stable 600 cycles.In addition,a comparison study of CNH and sulfurdoped CNH(S-CNH)electrodes,which differ only in the presence or absence of sulfur,revealed that sulfur doping can cause lower electrochemical series resistance,higher CE value,and better cycling stability in a wide range of current densities and number of cycles.Moreover,S-CNH-based LMAs showed high electrochemical performance in full-cell Li-S battery tests using a sulfur copolymer cathode,where a high energy density of 1370Wh kgelectrode−1 and an excellent power density of 4120Wkgelectrode−1 were obtained. 展开更多
关键词 carbon template Li-S batteries lithium metal anode lithium metal batteries nanoporous carbon sulfur doping
在线阅读 下载PDF
Nanoconfinement effect of nanoporous carbon electrodes for ionic liquid-based aluminum metal anode 被引量:1
2
作者 Juhee Yoon Seongbak Moon +3 位作者 Son Ha Hyung-Kyu Lim Hyoung-Joon Jin Young Soo Yun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期121-127,I0005,共8页
Rechargeable aluminum batteries(RABs),which use earth-abundant and high-volumetric-capacity metal anodes(8040 m Ah cm-3),have great potential as next-generation power sources because they use cheaper resources to deli... Rechargeable aluminum batteries(RABs),which use earth-abundant and high-volumetric-capacity metal anodes(8040 m Ah cm-3),have great potential as next-generation power sources because they use cheaper resources to deliver higher energies,compared to current lithium ion batteries.However,the mechanism of charge delivery in the newly developed,ionic liquid-based electrolytic system for RABs differs from that in conventional organic electrolytes.Thus,targeted research efforts are required to address the large overpotentials and cycling decay encountered in the ionic liquid-based electrolytic system.In this study,a nanoporous carbon(NPC)electrode with well-developed nanopores is used to develop a high-performance aluminum anode.The negatively charged nanopores can provide quenched dynamics of electrolyte molecules in the aluminum deposition process,resulting in an increased collision rate.The fast chemical equilibrium of anionic species induced by the facilitated anionic collisions leads to more favorable reduction reactions that form aluminum metals.The nanoconfinement effect causes separated nucleation and growth of aluminum nanoparticles in the multiple confined nanopores,leading to higher coulombic efficiencies and more stable cycling performance compared with macroporous carbon black and 2D stainless steel electrodes. 展开更多
关键词 Nanoconfinement effect Nanoporous carbon Ionic liquid electrolyte Metal anode Aluminum batteries Multivalent batteries
在线阅读 下载PDF
High-performance solid-solution potassium-ion intercalation mechanism of multilayered turbostratic graphene nanosheets
3
作者 Jiae Um Seung Uk Yoon +4 位作者 Hoseong Kim Beom Sik Youn Hyoung-Joon Jin Hyung-Kyu Lim Young Soo Yun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期814-823,共10页
The solid-solution reaction between an alkali cation and an active host material is known as a singlephase redox mechanism,and it is typically accompanied by a continuous voltage change.It is distinct from the typical... The solid-solution reaction between an alkali cation and an active host material is known as a singlephase redox mechanism,and it is typically accompanied by a continuous voltage change.It is distinct from the typical alkali cation intercalation reaction at an equivalent site of the active host material,which exhibits a voltage plateau.Herein,we report an unusual solid-solution potassium-ion intercalation mechanism with a low-voltage plateau capacity on multilayered turbostratic graphene nanosheets(T-GNSs).Despite the disordered graphitic structure with a broad range of d-spacings(3.65–4.18À),the T-GNSs showed a reversible plateau capacity of~200 m A h g^(-1),which is higher than that of a well-ordered graphite nanoplate(~120 m A h g^(-1)).In addition,a sloping capacity of~220 m A h g^(-1)was delivered with the plateau capacity,and higher rate capabilities,better reversibility,and a more stable cycling performance were confirmed on the turbostratic microstructure.First-principles calculations suggest that the multitudinous lattice domains of the T-GNSs contain diverse intercalation sites with strong binding energies,which could be the origin of the high-performance solid-solution potassium-ion intercalation behavior when the turbostratic graphene stacks have a d-spacing smaller than that of equilibrium potassium–graphite intercalation compounds(5.35À). 展开更多
关键词 Turbostratic graphite Graphene nanosheet Defective carbon Anode Potassium-ion batteries
在线阅读 下载PDF
Sulfur-doped hard carbon hybrid anodes with dual lithium-ion/metal storage bifunctionality for high-energy-density lithium-ion batteries
4
作者 Sungmin Cho Jong Chan Hyun +5 位作者 Son Ha Yeonhua Choi Honggyu Seong Jaewon Choi Hyoung-Joon Jin Young Soo Yun 《Carbon Energy》 SCIE CAS CSCD 2023年第1期71-81,共11页
Bifunctional hybrid anodes(BHAs),which are both a high-performance active host material for lithium-ion storage as well as a guiding agent for homogeneous lithium metal nucleation and growth,exhibit significant potent... Bifunctional hybrid anodes(BHAs),which are both a high-performance active host material for lithium-ion storage as well as a guiding agent for homogeneous lithium metal nucleation and growth,exhibit significant potential as anodes for next-generation high-energy-density lithium-ion batteries(LIBs).In this study,sulfur-doped hard carbon nanosphere assemblies(S-HCNAs)were prepared through a hydrothermal treatment of a liquid organic precursor,followed by high-temperature thermal annealing with elemental sulfur for application as BHAs for LIBs.In a carbonate-based electrolyte containing fluoroethylene carbonate additive,the S-HCNAs showed high lithium-ion storage capacities in sloping as well as plateau voltage sections,good rate capabilities,and stable cyclabilities.In addition,high average Coulombic efficiencies(CEs)of~96.9%were achieved for dual lithium-ion and lithium metal storage cycles.In the LIB full-cell tests with typical NCM811 cathodes,the S-HCNA-based BHAs containing~400 mA h g^(−1) of excess lithium led to high energy and power densities of~500Wh kg^(−1) and~1695Wkg^(−1),respectively,and a stable cycling performance with~100%CEs was achieved. 展开更多
关键词 hard carbon hybrid anode lithium-ion batteries lithium metal anode lithium metal batteries sulfur-doped carbon
在线阅读 下载PDF
High‑Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries
5
作者 Dong Hyuk Kang Minhyuck Park +20 位作者 Jeonghun Lee Chan Yeol Kim Jimin Park Youn‑Ki Lee Jong Chan Hyun Son Ha Jin Hwan Kwak Juhee Yoon Hyemin Kim Hyun Soo Kim Do Hyun Kim Sangmin Kim Ji Yong Park Robin Jang Seung Jae Yang Hee‑Dae Lim Se Youn Cho Hyoung‑Joon Jin Seungjin Lee Yunil Hwang Young Soo Yun 《Advanced Fiber Materials》 SCIE EI CAS 2024年第1期214-228,共15页
Thick cathodes can overcome the low capacity issues,which mostly hamper the performance of the conventional active cathode materials,used in rechargeable Li batteries.However,the typical slurry-based method induces cr... Thick cathodes can overcome the low capacity issues,which mostly hamper the performance of the conventional active cathode materials,used in rechargeable Li batteries.However,the typical slurry-based method induces cracking and flaking during the fabrication of thick electrodes.In addition,a significant increase in the charge-transfer resistance and local cur-rent overload results in poor rate capabilities and cycling stabilities,thereby limiting electrode thickening.In this study,a synergistic dual-network combination strategy based on a conductive nanofibrillar network(CNN)and a nano-bridging amor-phous polyhydroxyalkanoate(aPHA)binder is used to demonstrate the feasibility of constructing a high-performance thick cathode.The CNN and aPHA dual network facilitates the fabrication of a thick cathode(≥250μm thickness and≥90 wt%active cathode material)by a mass-producible slurry method.The thick cathode exhibited a high rate capability and excel-lent cycling stability.In addition,the thick cathode and thin Li metal anode pair(Li//t-NCM)exhibited an optimal energy performance,affording high-performance Li metal batteries with a high areal energy of~25.3 mW h cm^(-2),a high volumetric power density of~1720 W L^(-1),and an outstanding specific energy of~470 W h kg^(-1)at only 6 mA h cm^(-2). 展开更多
关键词 Thick cathode Polyhydroxyalkanoate binder Nano-bridging Conductive nano-fibrillar network Lithium metal battery
原文传递
Green Fabrication of Underwater Superoleophobic Biopolymeric Nanofibrous Membranes for Effective Oil-Water Separation 被引量:4
6
作者 Subin Oh Junsik Bang +1 位作者 Hyoung‑Joon Jin Hyo Won Kwak 《Advanced Fiber Materials》 SCIE EI 2023年第2期603-616,共14页
Currently,most of the materials for oil-water separation membranes are limited to fluorine-based polymers with low surface energy.However,it is not biodegradable and requires large amounts of organic and toxic solvent... Currently,most of the materials for oil-water separation membranes are limited to fluorine-based polymers with low surface energy.However,it is not biodegradable and requires large amounts of organic and toxic solvents in the membrane manufacturing process.Therefore,interest in the development of a new eco-friendly oil-water separation membrane that does not cause secondary pollution and exhibits selective wettability characteristics in water or oil is increasing.The biopolymeric nanofibrous membranes inspired by fish skin can provide specific underwater oleophobicity,which is effective for excellent oil-water separation efficiency and prevention of secondary contamination.Fish gelatin,which is highly soluble in water and has a low gelation temperature,can be electrospun in an aqueous solution and has the same polar functional groups as the hydrophilic mucilage of fish skin.In addition,the micro/nanostructure of fish skin,which induces superoleophobicity in water,introduces a bead-on-string structure using the Rayleigh instability of electrospinning.The solubility of fish gelatin in water was removed using an eco-friendly crosslinking method using reducing sugars.Fish skin-mimicking materials successfully separated suspended oil and emulsified oil,with a maximum flux of 2086 Lm^(−2) h^(−1) and a separation efficiency of more than 99%.The proposed biopolymeric nanofibrous membranes use fish gelatin,which can be extracted from fish waste and has excellent biodegradability with excellent oil-water separation performance.In addition,polymer material processing,including membrane manufacturing and crosslinking,can be realized through eco-friendly processes.Therefore,fish skin-inspired biopolymeric membrane is expected to be a promising candidate for a sustainable and effective oil-water separation membrane in the future. 展开更多
关键词 Fish gelatin Nanofibrous membrane Superoleophobicity SUPERHYDROPHILICITY Oil/water separation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部