Coronavirus disease 2019(COVID-19)is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).The gold standard method for the diagnosis of SARS-CoV-2 depends on quantitative r...Coronavirus disease 2019(COVID-19)is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).The gold standard method for the diagnosis of SARS-CoV-2 depends on quantitative reverse transcription-polymerase chain reaction till now,which is time-consuming and requires expensive instrumentation,and the confirmation of variants relies on further sequencing techniques.Herein,we first proposed a robust technique-methodology of electrochemical CRISPR sensing with the advantages of rapid,highly sensitivity and specificity for the detection of SARS-CoV-2 variant.To enhance the sensing capability,gold electrodes are uniformly decorated with electro-deposited gold nanoparticles.Using DNA template identical to SARS-CoV-2 Delta spike gene sequence as model,our biosensor exhibits excellent analytical detection limit(50 fM)and high linearity(R2=0.987)over six orders of magnitude dynamic range from 100 fM to 10 nM without any nucleic-acid-amplification assays.The detection can be completed within 1 h with high stability and specificity which benefits from the CRISPR-Cas system.Furthermore,based on the wireless micro-electrochemical platform,the proposed biosensor reveals promising application ability in point-of-care testing.展开更多
Efficient decision-making remains an open challenge in the research community,and many researchers are working to improve accuracy through the use of various computational techniques.In this case,the fuzzification and...Efficient decision-making remains an open challenge in the research community,and many researchers are working to improve accuracy through the use of various computational techniques.In this case,the fuzzification and defuzzification processes can be very useful.Defuzzification is an effective process to get a single number from the output of a fuzzy set.Considering defuzzification as a center point of this research paper,to analyze and understand the effect of different types of vehicles according to their performance.In this paper,the multi-criteria decision-making(MCDM)process under uncertainty and defuzzification is discussed by using the center of the area(COA)or centroidmethod.Further,to find the best solution,Hurwicz criteria are used on the defuzzified data.Anewdecision-making technique is proposed using Hurwicz criteria for triangular and trapezoidal fuzzy numbers.The proposed technique considers all types of decision makers’perspectives such as optimistic,neutral,and pessimistic which is crucial in solving decisionmaking problems.A simple case study is used to demonstrate and discuss the Centroid Method and Hurwicz Criteria for measuring risk attitudes among decision-makers.The significance of the proposed defuzzification method is demonstrated by comparing it to previous defuzzification procedures with its application.展开更多
A numerical analysis of the log-law behavior for the turbulent boundary layer of a wall-bounded flow is performed over a flat plate immersed in three nanofluids(Zn O-water,SiO_(2)-water,TiO_(2)-water).Numerical simula...A numerical analysis of the log-law behavior for the turbulent boundary layer of a wall-bounded flow is performed over a flat plate immersed in three nanofluids(Zn O-water,SiO_(2)-water,TiO_(2)-water).Numerical simulations using CFD code are employed to investigate the boundary layer and the hydrodynamic flow.To validate the current numerical model,measurement points from published works were used,and the compared results were in good compliance.Simulations were carried out for the velocity series of 0.04,0.4 and 4 m/s and nanoparticle concentrations0.1% and 5%.The influence of nanoparticles’ concentration on velocity,temperature profiles,wall shear stress,and turbulent intensity was investigated.The obtained results showed that the viscous sub-layer,the buffer layer,and the loglaw layer along the potential-flow layer could be analyzed based on their curving quality in the regions which have just a single wall distance.It was seen that the viscous sub-layer is the biggest area in comparison with other areas.Alternatively,the section where the temperature changes considerably correspond to the thermal boundary layer’s thickness goes a downward trend when the velocity decreases.The thermal boundary layer gets deep away from the leading edge.However,a rise in the volume fraction of nanoparticles indicated a minor impact on the shear stress developed in the wall.In all cases,the thickness of the boundary layer undergoes a downward trend as the velocity increases,whereas increasing the nanoparticle concentrations would enhance the thickness.More precisely,the log layer is closed with log law,and it is minimal between Y^(+)=50 and Y^(+)=95.The temperature for nanoparticle concentration φ=5%is higher than that for φ=0.1%,in boundary layers,for all studied nanofluids.However,it is established that the behavior is inverted from the value of Y^(+)=1 and the temperature for φ =0.1% is more important than the case of φ =5%.For turbulence intensity peak,this peak exists at Y^(+)=100 for v=4 m/s,Y^(+)=10 for v=0.4 m/s and Y^(+)=8 for v=0.04 m/s.展开更多
Genetic polymorphism has a vital role in the pathogenesis and development of myocardial infarction(MI).Single nucleotide polymorphism at any one of the amino acid sequences can result in a diseased state.A single gene...Genetic polymorphism has a vital role in the pathogenesis and development of myocardial infarction(MI).Single nucleotide polymorphism at any one of the amino acid sequences can result in a diseased state.A single gene can exhibit genetic polymorphism at more than one position giving rise to different variants.Genetic polymorphism of angiotensinogen(AGT)M235T,AGT T174M,and angiotensin-1-converting enzyme(ACE)I/D,endothelial nitric oxide synthase(eNOS),and methylenetetrahydrofolate reductase(MTHFR)can be a risk factor for MI.However,it is important to study the prevalence of genetic polymorphisms of these genes among different populations.MI is influenced by genetic polymorphism of various genes,including AGT,ACE,eNOS,MTHFR,etc.However,the association of genetic polymorphism of these genes varies among different populations,but different ethnic groups could show contradictory results.These genes have shown a positive association with risks of MI in some populations,whereas the results have not been consistent with every ethnic group.In this article,we have summarized the genetic variations in the aforementioned genes and their association with MI.展开更多
The cytokine channel’s mechanism for self-regulation involves the application of antagonistic cytokines that are synthesized to connect to the receptors and release soluble cytokine receptors.The very first receptor ...The cytokine channel’s mechanism for self-regulation involves the application of antagonistic cytokines that are synthesized to connect to the receptors and release soluble cytokine receptors.The very first receptor antagonist of cytokine that was naturally present was interleukin-1 receptor antagonist(IL-1Ra).The IL-1Ra protein forms are disinfected from supernatants of cultured monocytes on stacked IgG.The family of IL-1 consists of IL-1α,IL-1βand IL-1Ra.Human monocytes regulate the production of IL-Ra.IL-Ra takes part in normal physiological functions by using specific antibodies,and acts as an anti-inflammatory agent.IL-Ra is synthesized in the tissues during the period of active disease and can be systematically measured and/or estimated.Maintenance of the levels of IL-Ra and IL-1 is the main factor for host resistance in patients during diseased conditions,as IL-Ra acts as an inherent regulator of various inflammatory responses.In this article,we focuse on how IL-Ra is synthesized and performs its functions once the inflammatory responses are activated.展开更多
Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.Whi...Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.While using deep learning architectures has helped improve classification accuracy,the resulting models often need to be more flexible and require a large dataset to train.For the sake of taxonomy,this research proposes a hybrid method for categorizing guava,potato,and java plumleaves.Two new approaches are used to formthe hybridmodel suggested here.The guava,potato,and java plum plant species have been successfully segmented using the first model built on the MobileNetV2-UNET architecture.As a second model,we use a Plant Species Detection Stacking Ensemble Deep Learning Model(PSD-SE-DLM)to identify potatoes,java plums,and guava.The proposed models were trained using data collected in Punjab,Pakistan,consisting of images of healthy and sick leaves from guava,java plum,and potatoes.These datasets are known as PLSD and PLSSD.Accuracy levels of 99.84%and 96.38%were achieved for the suggested PSD-SE-DLM and MobileNetV2-UNET models,respectively.展开更多
In the current investigation,L-proline cadmium chloride monohydrate(LPCC) single crystal is grown by a slow solvent evaporation technique to identify its credibility for nonlinear optical device applications.The con...In the current investigation,L-proline cadmium chloride monohydrate(LPCC) single crystal is grown by a slow solvent evaporation technique to identify its credibility for nonlinear optical device applications.The constituent elements of LPCC crystal are determined by the energy dispersive spectroscopic(EDS) technique.The single crystal x-ray diffraction technique is used to determine the structural dimensions of LPCC crystal.The UV-visible studies are carried out within a wavelength range of 200 nm–1100 nm to determine the optical transmittance of LPCC crystal.The linear optical parameters of LPCC crystal are evaluated using the transmittance data to discuss its importance for distinct optical devices.The Nd:YAG laser assisted Kurtz–Perry test is carried out to determine the enhancement in second harmonic generation efficiency of LPCC crystal with reference to KDP crystal.The Z-scan technique is employed to assess the third order nonlinear optical(TONLO) properties of LPCC crystal at 632.8 nm.The Z-scan data are utilized to evaluate the TONLO refraction,absorption and susceptibility of LPCC crystal.The color oriented luminescence behavior of LPCC crystal is investigated within a spectral range of 350 nm–700 nm.The dependence of dielectric constant and dielectric loss on temperature and frequency is evaluated through the dielectric measurement studies.展开更多
This study investigates if the anti-tumor effect of Pterostilbene in the SKOV3 ovarian cancer(OC)cell line involves inhibition of cell metabolism and tested in this effect involves modulating AMPK and Akt-induced regu...This study investigates if the anti-tumor effect of Pterostilbene in the SKOV3 ovarian cancer(OC)cell line involves inhibition of cell metabolism and tested in this effect involves modulating AMPK and Akt-induced regulation of mTORC1.Initially,SKOV3 cells were cultured in the humidified conditions in DMEM media for 24 h with or without increasing concentration of Pterostilbene.Then,the cells were incubated with Pterostilbene(IC_(50)=50μM)under similar conditions with or without pre-incubation with Dorsomorphin,an AMPK inhibitor.In a dose-dependent manner,Pterostilbene inhibited SKOV3 cell survival and increased their lysate levels of lactate dehydrogenase(LDH)and single-stranded DNA(ssDNA).When SKOV3 cells were treated with 50μM Pterostilbene,Pterostilbene significantly suppressed cell migration and invasion,reduced lysate levels of lactic acid and the optical density of Oil Red O staining,and increased lysate glucose levels.It also increased levels of malondialdehyde(MDA),reactive oxygen species(ROS),and induced intrinsic cell apoptosis by upregulating protein levels of Bax and cleaved caspase-3 and reducing protein levels of Bcl-2.Besides,Pterostilbene reduced mRNA levels of sterol regulatory element-binding protein 1(SREBP-1),fatty acid synthase(FAS),acetyl CoA carboxylase-1(ACC-1),and AMP-activated protein kinase(AMPK).Furthermore,Pterostilbene increased the protein levels of p-AMPK,p-p53,p-raptor,p-TSC-2,but significantly decreased protein levels of p-Akt,p-TSC-2,p-mTOR,p-S6K1,and p-4E-BP.Treatment with Dorsomorphin(CC)abolished all the anti-tumorigenesis effects afforded by Pterostilbene and prevented Pterostilbene-induced phosphorylation of Akt,p53,and mTOR.In conclusion,the tumorsuppressive effect of Pterostilbene in SKOV3 cells involves the induction of ROS and inhibition of dysregulation cell metabolism mainly due to AMPK-induced Akt-dependent or independent suppression of mTOR.展开更多
The work presents studies on the complex permittivity and permeability of composites based on acrylonitrile butadiene rubber containing combinations of conductive fillers which include carbon black and nickel powder. ...The work presents studies on the complex permittivity and permeability of composites based on acrylonitrile butadiene rubber containing combinations of conductive fillers which include carbon black and nickel powder. The properties of those composites, containing each of the fillers at the same amount were compared. The permittivity and permeability values of the composites are influenced remarkably by their morphology and structure as well as by the morphological and structural specifics of both fillers. As electron scanning microscopy studies confirm, those parameters are predetermined by the nature of the composites studied—particle size, particles arrangement in the matrix and their tendency to clustering. Last but not least matrix-filler interface phenomena also impact the characteristics in question. The possibilities for applications of the composites in antennae have been studied, in particular, as substrates and insulating layers in flexible antennae for body centric communications (BCCs). The research results allow the conclusion that these materials can find such applications indeed. Composites of higher conductivity can be used where surface waves are generated to provide on-body communications, while composites of lower conductivity may be used for antennae that will be on the body of a person and will transmit to and receive from other antennas that are not on the body of the same person (off-body communications). It is clear that one can engineer the properties of antennae substrates at microwave frequencies by adjusting the filler content and the type of filler and thus control and tailor the antenna performance specific for a particular application.展开更多
Infectious diseases severely threaten public health and global biosafety.In addition to transmission through the air,pathogenic microorganisms have also been detected in environmental liquid samples,such as sewage wat...Infectious diseases severely threaten public health and global biosafety.In addition to transmission through the air,pathogenic microorganisms have also been detected in environmental liquid samples,such as sewage water.Conventional biochemical detection methodologies are time-consuming and cost-ineffective,and their detection limits hinder early diagnosis.In the present study,ultrafine plasmonic fiber probes with a diameter of 125μm are fabricated for clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR/Cas)-12a-mediated sensing of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Single-stranded DNA exposed on the fiber surface is trans-cleaved by the Cas12a enzyme to release gold nanoparticles that are immobilized onto the fiber surface,causing a sharp reduction in the surface plasmon resonance(SPR)wavelength.The proposed fiber probe is virus-specific with the limit of detection of~2,300 copies/ml,and genomic copy numbers can be reflected as shifts in wavelengths.A total of 21 sewage water samples have been examined,and the data obtained are consistent with those of quantitative polymerase chain reaction(qPCR).In addition,the Omicron variant and its mutation sites have been fast detected using S gene-specific Cas12a.This study provides an accurate and convenient approach for the real-time surveillance of microbial contamination in sewage water.展开更多
Graphene oxide (GO) possesses excellent mechanical strength,biocompatibility,colloidal stability,large surface area and high adsorption capability.It has driven to cancer nanotechnology to defeat cancer therapy obstac...Graphene oxide (GO) possesses excellent mechanical strength,biocompatibility,colloidal stability,large surface area and high adsorption capability.It has driven to cancer nanotechnology to defeat cancer therapy obstacles,via integration into three-dimensional (3D) hydrogel network with biocompatible polymers as nanocomposites carrier,and controllable release of anticancer drugs.Specifically,the surface of GO affords π-π stacking and hydrophilic interactions with anticancer drugs.Additionally,modification of GO with various polymers such as natural and synthetic polymers enhances its biodegradability,drug loading,and target delivery.In this review,GO based hydrogels research accomplishments are reviewed on the aspects of crosslinking strategies,preparation methods,the model drug,polymer conjugation and modification with targeting ligands.Moreover,swelling kinetics,drug release profile and biological activity in vivo and in vitro are discussed.The biocompatibility of GO based hydrogels is also discussed from the perspective of its nano-bio interfaces.Apart from that,the clinical potential of GO based hydrogels and its major challenges are addressed in detail.Finally,this review concludes with a summary and invigorating future perspectives of GO based hydrogels for anticancer drug delivery.It is anticipated that this review can stimulate a new research gateway to facilitate the development of anticancer drug delivery by harnessing the unique properties of GO based hydrogels,such as large surface area,chemical purity,high loading capacity of drug,chemical stability,and the nature of lipophilic for cell membrane penetration.展开更多
MXene is a variety of new two-dimensional(2D)materials with early transition metal carbides,nitrides,and carbonitrides.Quantum chemical studies have been carried out on the geometries,electronic structures,stability a...MXene is a variety of new two-dimensional(2D)materials with early transition metal carbides,nitrides,and carbonitrides.Quantum chemical studies have been carried out on the geometries,electronic structures,stability and catalytic properties of a non-noble metal single-atom catalyst(SAC)with single Co atom anchored on MXene materials of Mo_(2)CS_(2).The Co adatom anchored on top of the Mo atom of this MXene is found to be rather stable,and this SAC is appropriate for CO oxidation.The charge transfers from the surface to the adsorbed CO and O2 play a significant role in the activation of these molecules on Co_(1)/Mo_(2)CS_(2).With this catalyst,the Eley-Rideal(ER),Langmuir-Hinshelwood(LH),and Termolecular Eley-Rideal(TER)mechanisms are explored for CO oxidation.We find that,while all the three mechanisms are feasible at low temperature,Co_(1)/Mo_(2)CS_(2) possesses higher catalytic activity for CO oxidation through the TER mechanism that features an intriguing OC(OO)CO intermediate(IM)adsorbed on Co single atom.The calculated activation energy barriers of the rate-limiting step are 0.67 eV(TER),0.78 eV(LH)and 0.88 eV(ER),respectively.The present study illustrates that it is promising to develop and design low-cost,non-noble metal SACs using MXene types of 2D materials.展开更多
Although photodetection based on two-dimensional(2D)van der Waals(vdWs)P-N heterojunction has attracted extensive attention recently,their low responsivity(R)due to the lack of carrier gain mechanism in reverse bias o...Although photodetection based on two-dimensional(2D)van der Waals(vdWs)P-N heterojunction has attracted extensive attention recently,their low responsivity(R)due to the lack of carrier gain mechanism in reverse bias or zero bias operation hinders their applications in advanced photodetection area.Here,a black phosphorus/rhodamine 6G/molybdenum disulfide(BP/R6G/MoS_(2))photodiode with high responsivity at reverse bias or zero bias has been achieved by using interfacial charge transfer of R6G molecules assembled between heterojunction layers.The formed vdWs interface achieves high performance photoresponse by efficiently separating the additional photogenerated electrons and holes generated by R6G molecules.The devices sensitized by the dye molecule R6G exhibit enhanced photodetection performance without sacrificing the photoresponse speed.Among them,the R increased by 14.8-20.4 times,and the specific detectivity(D^(*))increased by 24.9-34.4 times.The strategy based on interlayer assembly of dye molecules proposed here may pave a new way for realizing high-performance photodetection based on 2D vdWs heterojunctions with high responsivity and fast response speed.展开更多
Ti_(3)CN,as a typical hetero-MXene,has attracted tremendous attention for its unique properties.However,its ultrafast photonics applications are still rare.Here,the few-layer Ti_(3)CN MXene was successfully prepared b...Ti_(3)CN,as a typical hetero-MXene,has attracted tremendous attention for its unique properties.However,its ultrafast photonics applications are still rare.Here,the few-layer Ti_(3)CN MXene was successfully prepared by selective etching and molecular delamination technique.The nonlinear optical response of few-layer Ti_(3)CN MXene at 640 nm was studied using the open-aperture Z-scan technique.The asprepared Ti_(3)CN MXene sample exhibited excellent nonlinear saturable absorption characteristics,resulting in the nonlinear absorption coefficient b of4.05×10^(-2)cm/GW,which was one order of magnitude larger than that of black phosphorus(BP)and molybdenum disulfide(MoS_(2)).For the optical modulation applications of few-layer Ti_(3)CN MXene,passively Q-switched(PQS)solid-state visible lasers based on Ti_(3)CN saturable absorber(SA)at 522 nm,607 nm,639 nm,and 721 nm were successfully realized.Furthermore,a Ti_(3)CN-based stable passively mode-locked Pr:YLF red laser was also successfully achieved with a pulse duration of 30 ps,and the corresponding repetition rate was 73.1 MHz.The optical modulation device based on few-layer Ti_(3)CN MXene shows good performance.Our work demonstrates that the tremendous prospects of the few-layer Ti_(3)CN MXene as a visible optical modulation device in ultrafast photonics applications.展开更多
Van der Waals(vdW)heterojunctions,with their unique electronic and optoelectronic properties,have become promising candidates for photodetector applications.Amplifying the contribution of the depletion region in vdW h...Van der Waals(vdW)heterojunctions,with their unique electronic and optoelectronic properties,have become promising candidates for photodetector applications.Amplifying the contribution of the depletion region in vdW heterojunction,which would enhance both of the collection efficiency and speed of the photogenerated carriers,presents an effective strategy for achieving high performance vdW heterojunction photodetectors.Herein,a fully depleted vdW heterojunction photodetector is built on two-dimensional(2D)semiconductor materials(GaTe and InSe)layered on a pattered bottom electrode in vertical structure,in which the generation and motion of carriers are exclusively achieved in the depletion region.Attributed to the intrinsic built-in electric field,the elimination of series resistance and the depletion region confinement of carriers,the as-fabricated photodetector exhibits prominent photovoltaic properties with a high open-circuit voltage of 0.465 V,as well as photoresponse characteristics with outstanding responsivity,detectivity and photoresponse speed of 63.7 A/W,3.88×10^(13)Jones,and 32.7 ms respectively.The overall performance of this fully depleted GaTe/InSe vdW heterojunctions photodetectors are ranking high among the top level of 2D materials based photodetectors.It indicates the device architecture can provide new opportunities for the fabrication of high-performance photodetectors.展开更多
This study is focused on calculation of the electronic structure and optical properties of non-metal doped Sb2Se3 using the first-principles method. One and two N atoms are introduced to Sb and Se sites in a Sb2Se3 cr...This study is focused on calculation of the electronic structure and optical properties of non-metal doped Sb2Se3 using the first-principles method. One and two N atoms are introduced to Sb and Se sites in a Sb2Se3 crystal. When one and two N atoms are introduced into the Sb2Se3 lattice at Sb sites, the electronic structure shows that the doping significantly modifies the bandgap of Sb2Se3 from 1.11 eV to 0.787 and 0.685 eV, respectively. When N atoms are introduced to Se sites, the material shows a metallic behavior. The static dielectric constants el(0) for Sb16Se24, SblsN1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 14.84, 15.54, 15.02, 18.9, and 39.29, respectively. The calculated values of the refractive index n(0) for Sb16Se24, SblsN1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 3.83, 3.92, 3.86, 4.33, and 6.21, respectively. The optical absorbance and optical conductivity curves of the crystal for N-doping at Sb sites show a significant redshift towards the short-wave infrared spectral region as compared to N-doping at Se sites. The modulation of the static refractive index and static dielectric constant is mainly dependent on the doping level. The optical properties and bandgap narrowing effect suggest that the N-doped Sb2Se3is a promising new semiconductor and can be a replacement for GaSb due to its very similar bandgap and low cost.展开更多
In this study,a set of coupled multi-media compartments(i.e.,sediment,soil,water and vegetable)was used to assess ecological and health risks from the ingestion of 11 PTEs(Pb,Cd,Cr,As,Hg,Cu,Zn,Ni,Co,Fe,and Mn)and thei...In this study,a set of coupled multi-media compartments(i.e.,sediment,soil,water and vegetable)was used to assess ecological and health risks from the ingestion of 11 PTEs(Pb,Cd,Cr,As,Hg,Cu,Zn,Ni,Co,Fe,and Mn)and their transportation routes in the water-soil-plant system from the coastal Bhola Island,Bangladesh.The mean concentrations of Cd,Pb,and Co for soil and Cd,Co,and As for sediment were higher than their reference values.In contrast,Cd,Pb,and Ni concentrations in water surpassed the acceptable limits set by national and international laws and were considered unsuitable for drinking purposes.Vegetables demonstrated high Pb and Cd contents,demonstrating a potential food safety risk to the inhabitants.Results of principal component analysis(PCA)revealed that Cd,Pb,Hg,Cu,Ni and Zn sources were likely to be anthropogenic,especially agro-farming inputs,whereas the Fe,As,Cr,Mn,and Co sources were similar to natural origin.So,Cd,Pb and Co are the key contaminants in the study area and pose the elevated health and ecological risks in the coastal area.Cd and Pb exhibited higher ecological risks in soils and sediments,as Pb had the highest bio-accessibility(BA;0.02±0.003)and Cd possessed a high bioaccumulation factor(BCF;0.004±0.006).The self-organizing map analysis recognized three spatial patterns which are good agreement with PCA.The average hazard index(HI)values for soil were above the permissible level(HI>1)set by the respective agency;two times higher HI values were noticed for children than adults,suggesting children are highly susceptible to health risk.Continuous monitoring and source controls for Cd and Pb,along with agro-farming management practices,need to be implemented to reduce the risk of PTE contamination to the aquatic ecosystem and its inhabitants.展开更多
A new fractional 6D chaotic model is constructed in this paper.The new fractional 6D chaotic model has six positive parameters plus the fractional order with eight nonlinear terms.The complicated chaotic dy-namics of ...A new fractional 6D chaotic model is constructed in this paper.The new fractional 6D chaotic model has six positive parameters plus the fractional order with eight nonlinear terms.The complicated chaotic dy-namics of the new fractional 6D model is presented and analyzed.The basic properties of this model are studied and its chaotic attractors,dissipative feature,symmetry,equilibrium points,Lyapunov Exponents are investigated.The new dynamics of the 6D fractional model is numerically simulated using Matlab software.In addition,utilizing the graph theory tools certain structural characteristics are calculated.An electrical circuit is built to implement the new 5.4 fractional order 6D model.Finally,an active fractional order controller is proposed to control the new model at different fractional orders.The chaos of the new model is very useful and can be used to produce random keys for data encryption.展开更多
Sensing devices are key nodes for information detection,processing,and conversion and are widely applied in different fields such as industrial production,environmental monitoring,and defense.However,increasing demand...Sensing devices are key nodes for information detection,processing,and conversion and are widely applied in different fields such as industrial production,environmental monitoring,and defense.However,increasing demand of these devices has complicated the application scenarios and diversified the detection targets thereby promoting the continuous development of sensing materials and detection methods.In recent years,Tin+1CnTx(n=1,2,3)MXenes with outstanding optical,electrical,thermal,and mechanical properties have been developed as ideal candidates of sensing materials to apply in physical,chemical,and biological sensing fields.In this review,depending on optical and electrical sensing signals,we systematically summarize the application of Tin+1CnTx in nine categories of sensors such as strain,gas,and fluorescence sensors.The excellent sensing properties of Tin+1CnTx allow its further development in emerging intelligent and bionic devices,including smart flexible devices,bionic E-skin,neural network coding and learning,bionic soft robot,as well as intelligent artificial eardrum,which are all discussed briefly in this review.Finally,we present a positive outlook on the potential future challenges and perspectives of MXene-based sensors.MXenes have shown a vigorous development momentum in sensing applications and can drive the development of an increasing number of new technologies.展开更多
A translucent wooden substrate with long-lasting phosphorescence,high photostability and durability,tough surface,ultraviolet protection,high optical transmittance,and superhydrophobicity was developed.This long-lasti...A translucent wooden substrate with long-lasting phosphorescence,high photostability and durability,tough surface,ultraviolet protection,high optical transmittance,and superhydrophobicity was developed.This long-lasting phosphorescent wooden substrate is able to continue emitting light for extended time periods.Lignin-modified wood(LMW)was immobilized with a solution of epoxy resin(ER)and rare-earth doped aluminate(REDA)phosphor nanoparticles(NPs).For an improved dispersion of pigment,REDA was synthesized in a nanoscale particle size,and characterized by transmission electron microscopy(TEM)to indicate a particle size of 8-14 nm.The crystal structure of REDA nanoparticles was also proved by X-ray diffraction(XRD).For an improved production of long-persistent phosphorescent colo rless woods,REDA must be well-dispersed in MAA without aggregation.Absorption and emissio n,as well as decay and lifetime spectra were explored.The morphologies of the wooden substrates with different ratios of REDA were investigated by scanning electron microscopy(SEM),X-ray fluorescence(XRF)analysis,Fourier transform infrared spectra(FT-IR),elemental mapping,and energy-dispersion Xray(EDXA).The phosphorescent woods show changes in color from colorless to green under ultraviolet(UV)irradiation,and to yellowish-green in the dark,as proved by the colorimetric parameters of the CIE Lab system.The afterglow wood samples display an absorbance band at 365 nm and two phosphorescent bands at 431 and 520 nm.Improved UV shielding,photostability,and hydrophobicity were explored.With increasing REDA ratio,both static contact and slide angles are found to improve in the ranges of147.6°-163.6°and 9°-14°,respectively.The long-lasting photoluminescence is optimized at a REDA ratio of 8%.The present strategy shows a large-scale production approach of multiple functional woods for many potential applications,such as smart glow in the dark windows and safety signs.展开更多
基金support from the Innovation Team Project of Department of Education of Guangdong Province(No.2018KCXTD026)Guangdong Scientific and Technological Project(2019B1515120043,2020A151501612,2021A1515220109,2022B1515020093)+1 种基金Science and Technology Innovation Commission of Shenzhen(Grant No.KCXFZ20201221173413038)Longhua District Science and Innovation Commission Project Grants of Shenzhen(JCYJ201904).
文摘Coronavirus disease 2019(COVID-19)is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).The gold standard method for the diagnosis of SARS-CoV-2 depends on quantitative reverse transcription-polymerase chain reaction till now,which is time-consuming and requires expensive instrumentation,and the confirmation of variants relies on further sequencing techniques.Herein,we first proposed a robust technique-methodology of electrochemical CRISPR sensing with the advantages of rapid,highly sensitivity and specificity for the detection of SARS-CoV-2 variant.To enhance the sensing capability,gold electrodes are uniformly decorated with electro-deposited gold nanoparticles.Using DNA template identical to SARS-CoV-2 Delta spike gene sequence as model,our biosensor exhibits excellent analytical detection limit(50 fM)and high linearity(R2=0.987)over six orders of magnitude dynamic range from 100 fM to 10 nM without any nucleic-acid-amplification assays.The detection can be completed within 1 h with high stability and specificity which benefits from the CRISPR-Cas system.Furthermore,based on the wireless micro-electrochemical platform,the proposed biosensor reveals promising application ability in point-of-care testing.
基金The Research Center for Advanced Materials Science(RCAMS)at King Khalid University,Saudi Arabia,for funding this work under the Grant Number RCAMS/KKU/019-20.
文摘Efficient decision-making remains an open challenge in the research community,and many researchers are working to improve accuracy through the use of various computational techniques.In this case,the fuzzification and defuzzification processes can be very useful.Defuzzification is an effective process to get a single number from the output of a fuzzy set.Considering defuzzification as a center point of this research paper,to analyze and understand the effect of different types of vehicles according to their performance.In this paper,the multi-criteria decision-making(MCDM)process under uncertainty and defuzzification is discussed by using the center of the area(COA)or centroidmethod.Further,to find the best solution,Hurwicz criteria are used on the defuzzified data.Anewdecision-making technique is proposed using Hurwicz criteria for triangular and trapezoidal fuzzy numbers.The proposed technique considers all types of decision makers’perspectives such as optimistic,neutral,and pessimistic which is crucial in solving decisionmaking problems.A simple case study is used to demonstrate and discuss the Centroid Method and Hurwicz Criteria for measuring risk attitudes among decision-makers.The significance of the proposed defuzzification method is demonstrated by comparing it to previous defuzzification procedures with its application.
基金support he received through General Research Project under the grant number (R.G.P.2/138/42)。
文摘A numerical analysis of the log-law behavior for the turbulent boundary layer of a wall-bounded flow is performed over a flat plate immersed in three nanofluids(Zn O-water,SiO_(2)-water,TiO_(2)-water).Numerical simulations using CFD code are employed to investigate the boundary layer and the hydrodynamic flow.To validate the current numerical model,measurement points from published works were used,and the compared results were in good compliance.Simulations were carried out for the velocity series of 0.04,0.4 and 4 m/s and nanoparticle concentrations0.1% and 5%.The influence of nanoparticles’ concentration on velocity,temperature profiles,wall shear stress,and turbulent intensity was investigated.The obtained results showed that the viscous sub-layer,the buffer layer,and the loglaw layer along the potential-flow layer could be analyzed based on their curving quality in the regions which have just a single wall distance.It was seen that the viscous sub-layer is the biggest area in comparison with other areas.Alternatively,the section where the temperature changes considerably correspond to the thermal boundary layer’s thickness goes a downward trend when the velocity decreases.The thermal boundary layer gets deep away from the leading edge.However,a rise in the volume fraction of nanoparticles indicated a minor impact on the shear stress developed in the wall.In all cases,the thickness of the boundary layer undergoes a downward trend as the velocity increases,whereas increasing the nanoparticle concentrations would enhance the thickness.More precisely,the log layer is closed with log law,and it is minimal between Y^(+)=50 and Y^(+)=95.The temperature for nanoparticle concentration φ=5%is higher than that for φ=0.1%,in boundary layers,for all studied nanofluids.However,it is established that the behavior is inverted from the value of Y^(+)=1 and the temperature for φ =0.1% is more important than the case of φ =5%.For turbulence intensity peak,this peak exists at Y^(+)=100 for v=4 m/s,Y^(+)=10 for v=0.4 m/s and Y^(+)=8 for v=0.04 m/s.
基金the support of the Research Center for Advanced Materials Science(RCAMS)at King Khalid University Abha,Saudi Arabia,through Grant(KKU/RCAMS/22).
文摘Genetic polymorphism has a vital role in the pathogenesis and development of myocardial infarction(MI).Single nucleotide polymorphism at any one of the amino acid sequences can result in a diseased state.A single gene can exhibit genetic polymorphism at more than one position giving rise to different variants.Genetic polymorphism of angiotensinogen(AGT)M235T,AGT T174M,and angiotensin-1-converting enzyme(ACE)I/D,endothelial nitric oxide synthase(eNOS),and methylenetetrahydrofolate reductase(MTHFR)can be a risk factor for MI.However,it is important to study the prevalence of genetic polymorphisms of these genes among different populations.MI is influenced by genetic polymorphism of various genes,including AGT,ACE,eNOS,MTHFR,etc.However,the association of genetic polymorphism of these genes varies among different populations,but different ethnic groups could show contradictory results.These genes have shown a positive association with risks of MI in some populations,whereas the results have not been consistent with every ethnic group.In this article,we have summarized the genetic variations in the aforementioned genes and their association with MI.
基金support of the Research Center for Advanced Materials Science(RCAMS)at King Khalid University Abha,Saudi Arabia,through Grant(KKU/RCAMS/22).
文摘The cytokine channel’s mechanism for self-regulation involves the application of antagonistic cytokines that are synthesized to connect to the receptors and release soluble cytokine receptors.The very first receptor antagonist of cytokine that was naturally present was interleukin-1 receptor antagonist(IL-1Ra).The IL-1Ra protein forms are disinfected from supernatants of cultured monocytes on stacked IgG.The family of IL-1 consists of IL-1α,IL-1βand IL-1Ra.Human monocytes regulate the production of IL-Ra.IL-Ra takes part in normal physiological functions by using specific antibodies,and acts as an anti-inflammatory agent.IL-Ra is synthesized in the tissues during the period of active disease and can be systematically measured and/or estimated.Maintenance of the levels of IL-Ra and IL-1 is the main factor for host resistance in patients during diseased conditions,as IL-Ra acts as an inherent regulator of various inflammatory responses.In this article,we focuse on how IL-Ra is synthesized and performs its functions once the inflammatory responses are activated.
基金funding this work through the Research Group Program under the Grant Number:(R.G.P.2/382/44).
文摘Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.While using deep learning architectures has helped improve classification accuracy,the resulting models often need to be more flexible and require a large dataset to train.For the sake of taxonomy,this research proposes a hybrid method for categorizing guava,potato,and java plumleaves.Two new approaches are used to formthe hybridmodel suggested here.The guava,potato,and java plum plant species have been successfully segmented using the first model built on the MobileNetV2-UNET architecture.As a second model,we use a Plant Species Detection Stacking Ensemble Deep Learning Model(PSD-SE-DLM)to identify potatoes,java plums,and guava.The proposed models were trained using data collected in Punjab,Pakistan,consisting of images of healthy and sick leaves from guava,java plum,and potatoes.These datasets are known as PLSD and PLSSD.Accuracy levels of 99.84%and 96.38%were achieved for the suggested PSD-SE-DLM and MobileNetV2-UNET models,respectively.
基金UGC,New Delhi,India for awarding Maulana Azad National Fellowship(Grant No.F1-17.1/2015-16/MANF-2015-17-MAH-68193)RCAMSKing Khalid University,Saudi Arabia for support
文摘In the current investigation,L-proline cadmium chloride monohydrate(LPCC) single crystal is grown by a slow solvent evaporation technique to identify its credibility for nonlinear optical device applications.The constituent elements of LPCC crystal are determined by the energy dispersive spectroscopic(EDS) technique.The single crystal x-ray diffraction technique is used to determine the structural dimensions of LPCC crystal.The UV-visible studies are carried out within a wavelength range of 200 nm–1100 nm to determine the optical transmittance of LPCC crystal.The linear optical parameters of LPCC crystal are evaluated using the transmittance data to discuss its importance for distinct optical devices.The Nd:YAG laser assisted Kurtz–Perry test is carried out to determine the enhancement in second harmonic generation efficiency of LPCC crystal with reference to KDP crystal.The Z-scan technique is employed to assess the third order nonlinear optical(TONLO) properties of LPCC crystal at 632.8 nm.The Z-scan data are utilized to evaluate the TONLO refraction,absorption and susceptibility of LPCC crystal.The color oriented luminescence behavior of LPCC crystal is investigated within a spectral range of 350 nm–700 nm.The dependence of dielectric constant and dielectric loss on temperature and frequency is evaluated through the dielectric measurement studies.
基金supported by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number PNU-DRI-RI-20-012.
文摘This study investigates if the anti-tumor effect of Pterostilbene in the SKOV3 ovarian cancer(OC)cell line involves inhibition of cell metabolism and tested in this effect involves modulating AMPK and Akt-induced regulation of mTORC1.Initially,SKOV3 cells were cultured in the humidified conditions in DMEM media for 24 h with or without increasing concentration of Pterostilbene.Then,the cells were incubated with Pterostilbene(IC_(50)=50μM)under similar conditions with or without pre-incubation with Dorsomorphin,an AMPK inhibitor.In a dose-dependent manner,Pterostilbene inhibited SKOV3 cell survival and increased their lysate levels of lactate dehydrogenase(LDH)and single-stranded DNA(ssDNA).When SKOV3 cells were treated with 50μM Pterostilbene,Pterostilbene significantly suppressed cell migration and invasion,reduced lysate levels of lactic acid and the optical density of Oil Red O staining,and increased lysate glucose levels.It also increased levels of malondialdehyde(MDA),reactive oxygen species(ROS),and induced intrinsic cell apoptosis by upregulating protein levels of Bax and cleaved caspase-3 and reducing protein levels of Bcl-2.Besides,Pterostilbene reduced mRNA levels of sterol regulatory element-binding protein 1(SREBP-1),fatty acid synthase(FAS),acetyl CoA carboxylase-1(ACC-1),and AMP-activated protein kinase(AMPK).Furthermore,Pterostilbene increased the protein levels of p-AMPK,p-p53,p-raptor,p-TSC-2,but significantly decreased protein levels of p-Akt,p-TSC-2,p-mTOR,p-S6K1,and p-4E-BP.Treatment with Dorsomorphin(CC)abolished all the anti-tumorigenesis effects afforded by Pterostilbene and prevented Pterostilbene-induced phosphorylation of Akt,p53,and mTOR.In conclusion,the tumorsuppressive effect of Pterostilbene in SKOV3 cells involves the induction of ROS and inhibition of dysregulation cell metabolism mainly due to AMPK-induced Akt-dependent or independent suppression of mTOR.
文摘The work presents studies on the complex permittivity and permeability of composites based on acrylonitrile butadiene rubber containing combinations of conductive fillers which include carbon black and nickel powder. The properties of those composites, containing each of the fillers at the same amount were compared. The permittivity and permeability values of the composites are influenced remarkably by their morphology and structure as well as by the morphological and structural specifics of both fillers. As electron scanning microscopy studies confirm, those parameters are predetermined by the nature of the composites studied—particle size, particles arrangement in the matrix and their tendency to clustering. Last but not least matrix-filler interface phenomena also impact the characteristics in question. The possibilities for applications of the composites in antennae have been studied, in particular, as substrates and insulating layers in flexible antennae for body centric communications (BCCs). The research results allow the conclusion that these materials can find such applications indeed. Composites of higher conductivity can be used where surface waves are generated to provide on-body communications, while composites of lower conductivity may be used for antennae that will be on the body of a person and will transmit to and receive from other antennas that are not on the body of the same person (off-body communications). It is clear that one can engineer the properties of antennae substrates at microwave frequencies by adjusting the filler content and the type of filler and thus control and tailor the antenna performance specific for a particular application.
基金supported by the National Natural Science Foundation of China(no.U1813207)the State Key Research Development Program of China(no.YS2022YFB3200011)+4 种基金Stabilization Support Program for Higher Education Institutions of Shenzhen(no.20200812115548001)Shenzhen Bay Laboratory Open Fund Project(no.SZBL2021080601012)High-end Talent Scientific Research Startup Project(no.827-000636)Shenzhen Science and Technology R&D and Innovation Foundation(no.JCJY20200109105608771)The authors acknowledge the support and funding of King Khalid University through Research Center for Advanced Materials Science(RCAMS)under grant no.RCAMS/KKU/0010/21.
文摘Infectious diseases severely threaten public health and global biosafety.In addition to transmission through the air,pathogenic microorganisms have also been detected in environmental liquid samples,such as sewage water.Conventional biochemical detection methodologies are time-consuming and cost-ineffective,and their detection limits hinder early diagnosis.In the present study,ultrafine plasmonic fiber probes with a diameter of 125μm are fabricated for clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR/Cas)-12a-mediated sensing of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Single-stranded DNA exposed on the fiber surface is trans-cleaved by the Cas12a enzyme to release gold nanoparticles that are immobilized onto the fiber surface,causing a sharp reduction in the surface plasmon resonance(SPR)wavelength.The proposed fiber probe is virus-specific with the limit of detection of~2,300 copies/ml,and genomic copy numbers can be reflected as shifts in wavelengths.A total of 21 sewage water samples have been examined,and the data obtained are consistent with those of quantitative polymerase chain reaction(qPCR).In addition,the Omicron variant and its mutation sites have been fast detected using S gene-specific Cas12a.This study provides an accurate and convenient approach for the real-time surveillance of microbial contamination in sewage water.
文摘Graphene oxide (GO) possesses excellent mechanical strength,biocompatibility,colloidal stability,large surface area and high adsorption capability.It has driven to cancer nanotechnology to defeat cancer therapy obstacles,via integration into three-dimensional (3D) hydrogel network with biocompatible polymers as nanocomposites carrier,and controllable release of anticancer drugs.Specifically,the surface of GO affords π-π stacking and hydrophilic interactions with anticancer drugs.Additionally,modification of GO with various polymers such as natural and synthetic polymers enhances its biodegradability,drug loading,and target delivery.In this review,GO based hydrogels research accomplishments are reviewed on the aspects of crosslinking strategies,preparation methods,the model drug,polymer conjugation and modification with targeting ligands.Moreover,swelling kinetics,drug release profile and biological activity in vivo and in vitro are discussed.The biocompatibility of GO based hydrogels is also discussed from the perspective of its nano-bio interfaces.Apart from that,the clinical potential of GO based hydrogels and its major challenges are addressed in detail.Finally,this review concludes with a summary and invigorating future perspectives of GO based hydrogels for anticancer drug delivery.It is anticipated that this review can stimulate a new research gateway to facilitate the development of anticancer drug delivery by harnessing the unique properties of GO based hydrogels,such as large surface area,chemical purity,high loading capacity of drug,chemical stability,and the nature of lipophilic for cell membrane penetration.
基金the National Natural Science Foundation of China(21590792,91426302,and 21433005)Guangdong Provincial Key Laboratory of Catalysis(2020B121201002)+1 种基金the National Science Basic Research Program of Shaanxi Province(2019JM-226)the financial and technical support from the Research Center for Advanced Materials Science(RCAMS)at King Khalid University through the Grant(RCAMS/KKU/014-20)。
文摘MXene is a variety of new two-dimensional(2D)materials with early transition metal carbides,nitrides,and carbonitrides.Quantum chemical studies have been carried out on the geometries,electronic structures,stability and catalytic properties of a non-noble metal single-atom catalyst(SAC)with single Co atom anchored on MXene materials of Mo_(2)CS_(2).The Co adatom anchored on top of the Mo atom of this MXene is found to be rather stable,and this SAC is appropriate for CO oxidation.The charge transfers from the surface to the adsorbed CO and O2 play a significant role in the activation of these molecules on Co_(1)/Mo_(2)CS_(2).With this catalyst,the Eley-Rideal(ER),Langmuir-Hinshelwood(LH),and Termolecular Eley-Rideal(TER)mechanisms are explored for CO oxidation.We find that,while all the three mechanisms are feasible at low temperature,Co_(1)/Mo_(2)CS_(2) possesses higher catalytic activity for CO oxidation through the TER mechanism that features an intriguing OC(OO)CO intermediate(IM)adsorbed on Co single atom.The calculated activation energy barriers of the rate-limiting step are 0.67 eV(TER),0.78 eV(LH)and 0.88 eV(ER),respectively.The present study illustrates that it is promising to develop and design low-cost,non-noble metal SACs using MXene types of 2D materials.
基金This work was supported by National Key Research and Development Project(No.2019YFB2203503)the National Natural Science Foundation of China(No.62105211)+8 种基金China Postdoctoral Science Foundation(Nos.2021M702242 and 2022T150431)Natural Science Foundation of Guangdong Province(Nos.2018B030306038 and 2020A1515110373)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010649)Science and Technology Projects in Guangzhou(No.202201000002)Science and Technology Innovation Commission of Shenzhen(Nos.JCYJ20180507182047316,20200805132016001,and JCYJ20200109105608771)Natural Science Foundation of Jilin Province(No.YDZJ202201ZYTS429)NTUT-SZU Joint Research Program(No.2021008)Authors acknowledge support and funding of King Khalid University through Research Center for Advanced Materials Science(RCAMS)(No.RCAMS/KKU/0010/21)The authors also acknowledge the Photonics Center of Shenzhen University for technical support.
文摘Although photodetection based on two-dimensional(2D)van der Waals(vdWs)P-N heterojunction has attracted extensive attention recently,their low responsivity(R)due to the lack of carrier gain mechanism in reverse bias or zero bias operation hinders their applications in advanced photodetection area.Here,a black phosphorus/rhodamine 6G/molybdenum disulfide(BP/R6G/MoS_(2))photodiode with high responsivity at reverse bias or zero bias has been achieved by using interfacial charge transfer of R6G molecules assembled between heterojunction layers.The formed vdWs interface achieves high performance photoresponse by efficiently separating the additional photogenerated electrons and holes generated by R6G molecules.The devices sensitized by the dye molecule R6G exhibit enhanced photodetection performance without sacrificing the photoresponse speed.Among them,the R increased by 14.8-20.4 times,and the specific detectivity(D^(*))increased by 24.9-34.4 times.The strategy based on interlayer assembly of dye molecules proposed here may pave a new way for realizing high-performance photodetection based on 2D vdWs heterojunctions with high responsivity and fast response speed.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.12004208 and 62005177)the Natural Science Foundation of Shandong Province of China(Grant No.ZR2021QF128)+2 种基金the Qilu University of Technology(Shandong Academy of Sciences)Education and Industry Integration and Innovation Pilot(Grant Nos.2022PY022 and 2022JBZ01-04)The author also thanks to support and funding of King Khalid University through Research Center for Advanced Materials Science(RCAMS)(Grant No:RCAMS/KKU/008/21).
文摘Ti_(3)CN,as a typical hetero-MXene,has attracted tremendous attention for its unique properties.However,its ultrafast photonics applications are still rare.Here,the few-layer Ti_(3)CN MXene was successfully prepared by selective etching and molecular delamination technique.The nonlinear optical response of few-layer Ti_(3)CN MXene at 640 nm was studied using the open-aperture Z-scan technique.The asprepared Ti_(3)CN MXene sample exhibited excellent nonlinear saturable absorption characteristics,resulting in the nonlinear absorption coefficient b of4.05×10^(-2)cm/GW,which was one order of magnitude larger than that of black phosphorus(BP)and molybdenum disulfide(MoS_(2)).For the optical modulation applications of few-layer Ti_(3)CN MXene,passively Q-switched(PQS)solid-state visible lasers based on Ti_(3)CN saturable absorber(SA)at 522 nm,607 nm,639 nm,and 721 nm were successfully realized.Furthermore,a Ti_(3)CN-based stable passively mode-locked Pr:YLF red laser was also successfully achieved with a pulse duration of 30 ps,and the corresponding repetition rate was 73.1 MHz.The optical modulation device based on few-layer Ti_(3)CN MXene shows good performance.Our work demonstrates that the tremendous prospects of the few-layer Ti_(3)CN MXene as a visible optical modulation device in ultrafast photonics applications.
基金supported by the State Key Research Development Program of China(Grant No.2019YFB2203503)National Natural Science Fund(Grant Nos.61875138,61961136001,62104153,62105211 and U1801254)+3 种基金Natural Science Foundation of Guangdong Province(2018B030306038 and 2020A1515110373)Science and Technology Projects in Guangzhou(no.202201000002)Science and Technology Innovation Commission of Shenzhen(JCYJ20180507182047316 and 20200805132016001)Natural Science Foundation of Jilin Province(Grant No.YDZJ202201ZYTS429)。
文摘Van der Waals(vdW)heterojunctions,with their unique electronic and optoelectronic properties,have become promising candidates for photodetector applications.Amplifying the contribution of the depletion region in vdW heterojunction,which would enhance both of the collection efficiency and speed of the photogenerated carriers,presents an effective strategy for achieving high performance vdW heterojunction photodetectors.Herein,a fully depleted vdW heterojunction photodetector is built on two-dimensional(2D)semiconductor materials(GaTe and InSe)layered on a pattered bottom electrode in vertical structure,in which the generation and motion of carriers are exclusively achieved in the depletion region.Attributed to the intrinsic built-in electric field,the elimination of series resistance and the depletion region confinement of carriers,the as-fabricated photodetector exhibits prominent photovoltaic properties with a high open-circuit voltage of 0.465 V,as well as photoresponse characteristics with outstanding responsivity,detectivity and photoresponse speed of 63.7 A/W,3.88×10^(13)Jones,and 32.7 ms respectively.The overall performance of this fully depleted GaTe/InSe vdW heterojunctions photodetectors are ranking high among the top level of 2D materials based photodetectors.It indicates the device architecture can provide new opportunities for the fabrication of high-performance photodetectors.
基金This work was supported in part by the National Natural Science Foundation of China (Grant No. 61675195) and Sponsored by CAS-TWAS President's Fellow-ship for international PhD. Students, PSF project No. PSF/NSFC/ Eng-P-UoL (02). F. K. Butt acknowledges the funding from Alexander von Humboldt Foundation and Federal Ministry for Education and Research (BMBF), Germany. The author (Bakhtiar U1 Haq) would like to express his gratitude to Research Center of Advanced Materials - King Khalid University, Saudi Arabia for support.
文摘This study is focused on calculation of the electronic structure and optical properties of non-metal doped Sb2Se3 using the first-principles method. One and two N atoms are introduced to Sb and Se sites in a Sb2Se3 crystal. When one and two N atoms are introduced into the Sb2Se3 lattice at Sb sites, the electronic structure shows that the doping significantly modifies the bandgap of Sb2Se3 from 1.11 eV to 0.787 and 0.685 eV, respectively. When N atoms are introduced to Se sites, the material shows a metallic behavior. The static dielectric constants el(0) for Sb16Se24, SblsN1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 14.84, 15.54, 15.02, 18.9, and 39.29, respectively. The calculated values of the refractive index n(0) for Sb16Se24, SblsN1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 3.83, 3.92, 3.86, 4.33, and 6.21, respectively. The optical absorbance and optical conductivity curves of the crystal for N-doping at Sb sites show a significant redshift towards the short-wave infrared spectral region as compared to N-doping at Se sites. The modulation of the static refractive index and static dielectric constant is mainly dependent on the doping level. The optical properties and bandgap narrowing effect suggest that the N-doped Sb2Se3is a promising new semiconductor and can be a replacement for GaSb due to its very similar bandgap and low cost.
文摘In this study,a set of coupled multi-media compartments(i.e.,sediment,soil,water and vegetable)was used to assess ecological and health risks from the ingestion of 11 PTEs(Pb,Cd,Cr,As,Hg,Cu,Zn,Ni,Co,Fe,and Mn)and their transportation routes in the water-soil-plant system from the coastal Bhola Island,Bangladesh.The mean concentrations of Cd,Pb,and Co for soil and Cd,Co,and As for sediment were higher than their reference values.In contrast,Cd,Pb,and Ni concentrations in water surpassed the acceptable limits set by national and international laws and were considered unsuitable for drinking purposes.Vegetables demonstrated high Pb and Cd contents,demonstrating a potential food safety risk to the inhabitants.Results of principal component analysis(PCA)revealed that Cd,Pb,Hg,Cu,Ni and Zn sources were likely to be anthropogenic,especially agro-farming inputs,whereas the Fe,As,Cr,Mn,and Co sources were similar to natural origin.So,Cd,Pb and Co are the key contaminants in the study area and pose the elevated health and ecological risks in the coastal area.Cd and Pb exhibited higher ecological risks in soils and sediments,as Pb had the highest bio-accessibility(BA;0.02±0.003)and Cd possessed a high bioaccumulation factor(BCF;0.004±0.006).The self-organizing map analysis recognized three spatial patterns which are good agreement with PCA.The average hazard index(HI)values for soil were above the permissible level(HI>1)set by the respective agency;two times higher HI values were noticed for children than adults,suggesting children are highly susceptible to health risk.Continuous monitoring and source controls for Cd and Pb,along with agro-farming management practices,need to be implemented to reduce the risk of PTE contamination to the aquatic ecosystem and its inhabitants.
基金support and funding of Research Center for Advanced Material Science(RCAMS)at King Khalid Uni-versity through Grant No.RCAMS/KKU/009-21.
文摘A new fractional 6D chaotic model is constructed in this paper.The new fractional 6D chaotic model has six positive parameters plus the fractional order with eight nonlinear terms.The complicated chaotic dy-namics of the new fractional 6D model is presented and analyzed.The basic properties of this model are studied and its chaotic attractors,dissipative feature,symmetry,equilibrium points,Lyapunov Exponents are investigated.The new dynamics of the 6D fractional model is numerically simulated using Matlab software.In addition,utilizing the graph theory tools certain structural characteristics are calculated.An electrical circuit is built to implement the new 5.4 fractional order 6D model.Finally,an active fractional order controller is proposed to control the new model at different fractional orders.The chaos of the new model is very useful and can be used to produce random keys for data encryption.
基金National Key R&D Program of China(Grant No.2018YFB1801001,and 2019YFB2203503)National Natural Science Foundation of China(Grant No.62105069,61875133 and 11874269)+5 种基金Guangdong Introducing Innovative and Enterpreneurial Teams of“The Pearl River Talent Recruitment Program”(Grant No.2019ZT08X340)Research and Development Plan in Key Areas of Guangdong Province(Grant No.2018B010114002)Guangdong Provincial Key Laboratory of Information Photonics Technology(Grant No.2020B121201011)Innovation Team Project of Department of Education of Guangdong Province(Grant No.2018KCXTD026)Science and Technology Innovation Leading Talents Program of Guangdong Province(Grant No.2019TX05C343)King Khalid University through Research Center for Advanced Materials Science(RCAMS)(RCAMS/KKU/006/21).
文摘Sensing devices are key nodes for information detection,processing,and conversion and are widely applied in different fields such as industrial production,environmental monitoring,and defense.However,increasing demand of these devices has complicated the application scenarios and diversified the detection targets thereby promoting the continuous development of sensing materials and detection methods.In recent years,Tin+1CnTx(n=1,2,3)MXenes with outstanding optical,electrical,thermal,and mechanical properties have been developed as ideal candidates of sensing materials to apply in physical,chemical,and biological sensing fields.In this review,depending on optical and electrical sensing signals,we systematically summarize the application of Tin+1CnTx in nine categories of sensors such as strain,gas,and fluorescence sensors.The excellent sensing properties of Tin+1CnTx allow its further development in emerging intelligent and bionic devices,including smart flexible devices,bionic E-skin,neural network coding and learning,bionic soft robot,as well as intelligent artificial eardrum,which are all discussed briefly in this review.Finally,we present a positive outlook on the potential future challenges and perspectives of MXene-based sensors.MXenes have shown a vigorous development momentum in sensing applications and can drive the development of an increasing number of new technologies.
基金support and funding of King Khalid University through Research Center for Advanced Materials Science(RCAMS)under grant no:RCAMS/KKU/008/21the support provided by King Abdullah City for Atomic and Renewable Energy(K.A.CARE)under K.A.CARE-King Abdulaziz University Collaboration Program。
文摘A translucent wooden substrate with long-lasting phosphorescence,high photostability and durability,tough surface,ultraviolet protection,high optical transmittance,and superhydrophobicity was developed.This long-lasting phosphorescent wooden substrate is able to continue emitting light for extended time periods.Lignin-modified wood(LMW)was immobilized with a solution of epoxy resin(ER)and rare-earth doped aluminate(REDA)phosphor nanoparticles(NPs).For an improved dispersion of pigment,REDA was synthesized in a nanoscale particle size,and characterized by transmission electron microscopy(TEM)to indicate a particle size of 8-14 nm.The crystal structure of REDA nanoparticles was also proved by X-ray diffraction(XRD).For an improved production of long-persistent phosphorescent colo rless woods,REDA must be well-dispersed in MAA without aggregation.Absorption and emissio n,as well as decay and lifetime spectra were explored.The morphologies of the wooden substrates with different ratios of REDA were investigated by scanning electron microscopy(SEM),X-ray fluorescence(XRF)analysis,Fourier transform infrared spectra(FT-IR),elemental mapping,and energy-dispersion Xray(EDXA).The phosphorescent woods show changes in color from colorless to green under ultraviolet(UV)irradiation,and to yellowish-green in the dark,as proved by the colorimetric parameters of the CIE Lab system.The afterglow wood samples display an absorbance band at 365 nm and two phosphorescent bands at 431 and 520 nm.Improved UV shielding,photostability,and hydrophobicity were explored.With increasing REDA ratio,both static contact and slide angles are found to improve in the ranges of147.6°-163.6°and 9°-14°,respectively.The long-lasting photoluminescence is optimized at a REDA ratio of 8%.The present strategy shows a large-scale production approach of multiple functional woods for many potential applications,such as smart glow in the dark windows and safety signs.