Land creation projects have been implemented in China to expand urban space in mountainous areas.In addition to the predictable settlement brought about by filling construction,varying degrees of land subsidence and e...Land creation projects have been implemented in China to expand urban space in mountainous areas.In addition to the predictable settlement brought about by filling construction,varying degrees of land subsidence and engineering failures have a demonstrated relationship to groundwater level fluctuation induced by land creation engineering.In this work,we adopted a typical large-scale land creation project,Yan’an New City in Shaanxi province,West China,as our study area.Prior to conducting the main experiment,preliminary field investigation and groundwater level monitoring were conducted to determine the groundwater fluctuation trend induced by land creation engineering.Although a blind drainage system was implemented,the depth aspect of groundwater level changes after large-scale land creation still needed to be addressed.To study the degree of impact and the settlement mechanism induced by the rising groundwater level,we conducted a Water Immersion Test(WIT)in a typical land creation site for 107 days.The rising groundwater level was simulated by injecting water from the bottom of the filling foundation.During the WIT,the soil water content,surface subsidence,and internal settlement of soil at different depths were obtained.Surface subsidence development could be categorized into four stages during the water level increase.The second stage,which is defined as the point when the groundwater level rises to 10 m,marked the critical point in the process.Furthermore,it was ascertained that the local settlement in regions that were originally composed of steep slopes is larger than that in originally flat areas.In addition,ground cracks and sinkholes in the study area were inspected;and it was determined that they would become new channels that would accelerate water infiltration and exacerbate the settlement.Based on the results from our field investigation and testing,several suggestions are proposed for land creation projects to mitigate issues associated with construction-induced groundwater level rising.展开更多
By testing indoor and outdoor thermal environment of residential buildings that apply 4 mostused heating ways in Hantai District,Hanzhong City,this paper explored the indoor thermal environment conditions of different...By testing indoor and outdoor thermal environment of residential buildings that apply 4 mostused heating ways in Hantai District,Hanzhong City,this paper explored the indoor thermal environment conditions of different heating ways,to provide references for choosing a suitable heating way in the local area.展开更多
This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand(CSLSCC)to prevent the pollution of steel slag in the en...This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand(CSLSCC)to prevent the pollution of steel slag in the environment.The SF,J-ring,visual stability index,and sieve analysis tests are primarily employed in this research to investigate the workability of freshly mixed self-compacting concrete containing steel slag at various steel slag sand replacement rates.The experiment results indicate that CSLSCC with the 20%volume percentage of steel slag(VPS)performs better workability,higher strength,and higher specific strength.The 7-day compressive strength of CSLSCC with the 0.4 of the water-binder ratio(W/B),decreases with the increase of steel slag content,while the 28-day compressive strength increases significantly.The ceramsite self-compacting concrete with good comprehensive performance can be obtained when the substitution rate of steel slag sand for fine aggregate is less than 20%(volume percentage).展开更多
In this paper, the suitability and construction technology of self-insulation walls were studied under the specific climatic conditions and regional resources of Hanzhong and Ankang in the hot summer and cold winter z...In this paper, the suitability and construction technology of self-insulation walls were studied under the specific climatic conditions and regional resources of Hanzhong and Ankang in the hot summer and cold winter zone of Southern Shaanxi. Through the calculation of heat transfer coefficient and thermal inertia index, combined with the specifications of the shale hollow brick and aerated concrete block of Hanzhong and Ankang in southern Shaanxi, the thermal performance and suitable thickness of the external wall using self-insulation materials that meet the Design Standard for Energy Efficiency of Residential Buildings(DBJ61-65-2011) in Shaanxi Province were obtained. The results showed that the self-insulation wall had technical suitability in the hot summer and cold winter zone. The research results provide not only a theoretical basis for the external wall insulation design of urban residential buildings in the hot summer and cold winter zone of southern Shaanxi, but also a reference for designers to carry out energy-saving design of external walls of residential buildings in other similar climate zones.展开更多
Energy-saving design of residential building is an important part of energy-saving architectural design. Planning and design of residential buildings in Hanzhong area should pay more attention to the building orientat...Energy-saving design of residential building is an important part of energy-saving architectural design. Planning and design of residential buildings in Hanzhong area should pay more attention to the building orientation, sunshine, summer ventilation and wind resistance in winter and so on, so as to create favorable conditions for energy-saving design of single buildings. The geographical location, climatic characteristics, residents living habits and indoor and outdoor thermal environment situation were analyzed in this paper, and combined with the existing problems of energy conservation in the planning and layout of residential buildings in Hanzhong area. Based on the investigation, this paper drew some conclusions to provide references for the energy-saving planning and design of urban residential buildings in the local area.展开更多
In this paper, 5 high-rise hotels in Xi'an were selected for research, their energy consumption data from 2015 to 2016 were collected and analyzed, their comprehensive energy consumption per unit area was compared...In this paper, 5 high-rise hotels in Xi'an were selected for research, their energy consumption data from 2015 to 2016 were collected and analyzed, their comprehensive energy consumption per unit area was compared by using the standard coal coefficient, and their energy use characteristics and influencing factors were obtained. The test analyzed various parameters of the indoor environment and evaluated the indoor environmental quality according to the specifications and standards. Starting from the perspective of energy use systems, this paper found energy consumption priorities and problems of these hotels, and proposed feasible energy conservation measures, in a view to providing a reference for energy conservation design of high-rise hotels in Xi'an.展开更多
Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,a...Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.展开更多
In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion ero...In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar.展开更多
In order to study the rheological properties of red stone granular soil,a series of rheological experiments were executed on large tri-axial rheological apparatus.Under 100,200 and 300 kPa confining stress conditions,...In order to study the rheological properties of red stone granular soil,a series of rheological experiments were executed on large tri-axial rheological apparatus.Under 100,200 and 300 kPa confining stress conditions,the rheological tests were carried out.These experiment results showed that the stress conditions,especially the stress level were the critical influencing factors of the rheological deformation properties.Under the low stress level(S=0.1),the granular soil showed the elastic properties,and there was no obvious rheological deformation.Under the middle stress level(0.2<S≤0.6),creep curves showed the linear viscoelastic rheological properties.However,under the high stress level(S>0.8) creep curves showed the non-linear viscous plastic rheological properties.Especially,under the stress level of S=1.0,the accelerated rheological phase of creep curves occurred at early time with a trend of failure.The stress level had obvious effects on the final rheological deformation of the soil sample,and the final rheological deformation increments nonlinearly increased with stress level.The final rheological deformation increment and step was little under low stress level,while it became large under high stress level,which showed the nonlinearly rheological properties of the granular soil.The confining pressure also had direct effects on final rheological deformation,and the final rheological deformation linearly increased with confining pressure increments.展开更多
Geological hazard is an adverse geological condition that can cause loss of life and property.Accurate prediction and analysis of geological hazards is an important and challenging task.In the past decade,there has be...Geological hazard is an adverse geological condition that can cause loss of life and property.Accurate prediction and analysis of geological hazards is an important and challenging task.In the past decade,there has been a great expansion of geohazard detection data and advancement in data-driven simulation techniques.In particular,great efforts have been made in applying deep learning to predict geohazards.To understand the recent progress in this field,this paper provides an overview of the commonly used data sources and deep neural networks in the prediction of a variety of geological hazards.展开更多
Old-age building was designed in Ziwu Town,from the aspects of energy saving,environmental protection,full use of solar energy and characteristics of the local climate.In order to meet the requirements of energy conse...Old-age building was designed in Ziwu Town,from the aspects of energy saving,environmental protection,full use of solar energy and characteristics of the local climate.In order to meet the requirements of energy conservation,environmental protection and climate adaptability of residential buildings,this paper integrates the construction and design in the prefabricated building design,at the same time,with the consideration of the possibility of expansion and removal of the nursing home,the concept of "modular unit" is put forward.Considering the climatic adaptability of the base position,the utilization of solar energy and the organization of natural ventilation should be paid attention to,also,the rammed soil construction method is added in this design,which can improve the thermal insulation performance of the building enclosure and create a comfortable indoor thermal environment both in winter and summer.In order to realize the object of industrial building construction and design,the prefabricated construction method is used,which produces impact on the surrounding environment more environmentally friendly.The building will be easily built,less restricted,and low-cost.What's more,local material and the advantages of all dry work increase the operability of the project.展开更多
In order to study the interaction between transverse isotropy rock mass and supporting structure,the laboratory tests for rock sampled from the slope at expressway project were carried out,and the parameters of elasti...In order to study the interaction between transverse isotropy rock mass and supporting structure,the laboratory tests for rock sampled from the slope at expressway project were carried out,and the parameters of elasticity for transverse isotropic rock were determined by the uniaxial compression tests for rock sample with different strike of stratification plane.Then,based on the relationship of stress-stain for transverse isotropic rock mass,the analytical model was established for the interaction between transverse isotropic rock mass and frame beam with pre-stressed anchor cable.Furthermore,the conception of the best anchorage-angle in pre-stressed anchor cable was proposed.At last,the parameters of the interaction between transverse isotropy rock mass and frame beam with pre-stressed anchor cable were investigated by finite element method,and the best anchorage-angle in pre-stressed anchor cable was obtained.The rules of the influence of the directivity of stratification plane on supporting structure were determined.The results show that the analytical model and numerical method on the design of pre-stressed anchor cable with frame beam supporting for transverse isotropy rock slope are reasonable and reliable in practical engineering design.展开更多
Vibration equations of time-varying system are transformed to the form which is suitable to precise integration algorithm.Precision analysis and computation efficiency of new algorithm are implemented.The following co...Vibration equations of time-varying system are transformed to the form which is suitable to precise integration algorithm.Precision analysis and computation efficiency of new algorithm are implemented.The following conclusions can be got.Choosing matrixes M,G and K is certainly flexible.We can place left side of nonlinear terms of vibration equations of time-varying system into right side of equations in precise integration algorithms.The key of transformation from vibration equations of time-varying system to first order differential equations is to form matrix H,which should be assured to be nonsingular.With suitable disposal,precision and computation efficiency of precise integration algorithms are greatly larger than those of general methods.展开更多
The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interfa...The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.展开更多
Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated ...Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone.展开更多
Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber.The tests have been conducted t...Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber.The tests have been conducted to analyze the liquid plastic limit,the particle distribution and the free expansion rate.The results show that:(1)With an increase in the cement-jute fiber content,the free expansion rate of the modified expansive soil gradually decreases,however,such a rate rebounds when the fiber content exceeds 0.5%and the cement content exceeds 6%.(2)With an increase in the cement percentage,the particle unevenness coefficient(Cu)and curvature coefficient(Cc)of the modified expansive soil tend to grow gradually.The Cc coefficient reaches 1.0 when the cement content is 6%.The unevenness coefficient of 16 soil samples is greater than 5.0,however,the Cu coefficient decreases when the cement content reaches 6%.(3)The plastic limit of soil increases as the cement content is made higher,while the liquid limit and plastic index decrease gradually.When the content of the modified material is 2%+0.1%~2%+0.7%(Cement content+jute fiber content),the change of particle size distribution is most obvious.(4)When the contents of cement and jute fiber are is 6%and 0.5%,respectively,the modification induced in the physical properties of soil samples corresponds to the best case.展开更多
In seasonal frozen soil,freezing and thawing can change the physical and mechanical properties and affect slope stability.There are complex moisture conditions in the main water transfer canal.A study of the hydrother...In seasonal frozen soil,freezing and thawing can change the physical and mechanical properties and affect slope stability.There are complex moisture conditions in the main water transfer canal.A study of the hydrothermal evolution of canals with different initial water contents under the action of freezing and thawing is of great importance for the prevention and control of canal slope slides.Hydrothermal coupling models are the key to revealing the canal's hydrothermal evolution.As some of the modeling parameters in the current hydrothermal coupling model are based on empirical values,particularly those in the van Genuchten equation,which are not necessarily related to soil properties,they are not suitable for analyzing the hydrothermal evolution of canals.This paper determines the soil-water characteristic curve from the cumulative curve of particle gradation in the subsoil,and then determines the hydraulic parameters of the subsoil using the VG model,which then corrects the hydrothermal coupling model.The method of modifying the hydrothermal coupling model is original,which makes the model more realistically reflect drainage soil characteristics.During freezing and thawing of channel slopes with different initial water contents(21%,25%,29%,33%,37%,and 41%),temperature field,water field,and ice content distributions were investigated.Using the V-G model,the optimal parameters for canal subsoil were a=0.06,n=1.2,and m=0.17,and temperature distribution trends between canals with different water contents were basically similar.Water will accumulate at the bottom as the liquid water content increases at the canal boundary.展开更多
The pressure swing adsorption(PSA)system is widely applied to separate and purify hydrogen from gaseous mixtures.The extended Langmuir equation fitted from the extended Langmuir-Freundlich isotherm has been used to pr...The pressure swing adsorption(PSA)system is widely applied to separate and purify hydrogen from gaseous mixtures.The extended Langmuir equation fitted from the extended Langmuir-Freundlich isotherm has been used to predict the adsorption isothermal of hydrogen and methane on the zeolite 5A adsorbent bed.A six-step two-bed PSA model for hydrogen purification is developed and validated by comparing its simulation results with other works.The effects of the adsorption pressure,the P/F ratio,the adsorption step time and the pressure equalization time on the performance of the hydrogen purification system are studied.A four-step two-bed PSA model is taken into consideration,and the six-step PSA system shows higher about 13%hydrogen recovery than the four-step PSA system.The performance of the vacuum pressure swing adsorption(VPSA)system is compared with that of the PSA system,the VPSA system shows higher hydrogen purity than the PSA system.Based on the validated PSA model,a dataset has been produced to train the artificial neural network(ANN)model.The effects of the number of neurons in the hidden layer and the number of samples used for training ANN model on the predicted performance of ANN model are investigated.Then,the well-trained ANN model with 6 neurons in the hidden layer is applied to predict the performance of the PSA system for hydrogen purification.Multi-objective optimization of hydrogen purification system is performed based on the trained ANN model.The artificial neural network can be considered as a very effective method for predicting and optimizing the performance of the PSA system for hydrogen purification.展开更多
基金financial support from National Natural Science Foundation of China (Project No. 41902299 41672305)+2 种基金the Key Science and Technology Program of Shaanxi Province (Project No. 2017ZDXM-SF-078, 2017ZDXM-SF-082)National Key Research and Development Program of China (2018YFC1504700)Shaanxi new-star plan of science and technology (Project No. 2018KJXX020)
文摘Land creation projects have been implemented in China to expand urban space in mountainous areas.In addition to the predictable settlement brought about by filling construction,varying degrees of land subsidence and engineering failures have a demonstrated relationship to groundwater level fluctuation induced by land creation engineering.In this work,we adopted a typical large-scale land creation project,Yan’an New City in Shaanxi province,West China,as our study area.Prior to conducting the main experiment,preliminary field investigation and groundwater level monitoring were conducted to determine the groundwater fluctuation trend induced by land creation engineering.Although a blind drainage system was implemented,the depth aspect of groundwater level changes after large-scale land creation still needed to be addressed.To study the degree of impact and the settlement mechanism induced by the rising groundwater level,we conducted a Water Immersion Test(WIT)in a typical land creation site for 107 days.The rising groundwater level was simulated by injecting water from the bottom of the filling foundation.During the WIT,the soil water content,surface subsidence,and internal settlement of soil at different depths were obtained.Surface subsidence development could be categorized into four stages during the water level increase.The second stage,which is defined as the point when the groundwater level rises to 10 m,marked the critical point in the process.Furthermore,it was ascertained that the local settlement in regions that were originally composed of steep slopes is larger than that in originally flat areas.In addition,ground cracks and sinkholes in the study area were inspected;and it was determined that they would become new channels that would accelerate water infiltration and exacerbate the settlement.Based on the results from our field investigation and testing,several suggestions are proposed for land creation projects to mitigate issues associated with construction-induced groundwater level rising.
文摘By testing indoor and outdoor thermal environment of residential buildings that apply 4 mostused heating ways in Hantai District,Hanzhong City,this paper explored the indoor thermal environment conditions of different heating ways,to provide references for choosing a suitable heating way in the local area.
基金supported by the National Key Research and Development Program of China(No.2021YFB3802005)the National Natural Science Foundation of China(Grant No.51978002)+1 种基金the Natural Science Foundation for the Higher Education Institutions in Anhui Province of China(Grant No.KJ2020A0845)the Housing and Urban-Rural Construction Science and Technology Plan in Anhui Province of China(Grant No.2021-YF69).
文摘This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand(CSLSCC)to prevent the pollution of steel slag in the environment.The SF,J-ring,visual stability index,and sieve analysis tests are primarily employed in this research to investigate the workability of freshly mixed self-compacting concrete containing steel slag at various steel slag sand replacement rates.The experiment results indicate that CSLSCC with the 20%volume percentage of steel slag(VPS)performs better workability,higher strength,and higher specific strength.The 7-day compressive strength of CSLSCC with the 0.4 of the water-binder ratio(W/B),decreases with the increase of steel slag content,while the 28-day compressive strength increases significantly.The ceramsite self-compacting concrete with good comprehensive performance can be obtained when the substitution rate of steel slag sand for fine aggregate is less than 20%(volume percentage).
文摘In this paper, the suitability and construction technology of self-insulation walls were studied under the specific climatic conditions and regional resources of Hanzhong and Ankang in the hot summer and cold winter zone of Southern Shaanxi. Through the calculation of heat transfer coefficient and thermal inertia index, combined with the specifications of the shale hollow brick and aerated concrete block of Hanzhong and Ankang in southern Shaanxi, the thermal performance and suitable thickness of the external wall using self-insulation materials that meet the Design Standard for Energy Efficiency of Residential Buildings(DBJ61-65-2011) in Shaanxi Province were obtained. The results showed that the self-insulation wall had technical suitability in the hot summer and cold winter zone. The research results provide not only a theoretical basis for the external wall insulation design of urban residential buildings in the hot summer and cold winter zone of southern Shaanxi, but also a reference for designers to carry out energy-saving design of external walls of residential buildings in other similar climate zones.
文摘Energy-saving design of residential building is an important part of energy-saving architectural design. Planning and design of residential buildings in Hanzhong area should pay more attention to the building orientation, sunshine, summer ventilation and wind resistance in winter and so on, so as to create favorable conditions for energy-saving design of single buildings. The geographical location, climatic characteristics, residents living habits and indoor and outdoor thermal environment situation were analyzed in this paper, and combined with the existing problems of energy conservation in the planning and layout of residential buildings in Hanzhong area. Based on the investigation, this paper drew some conclusions to provide references for the energy-saving planning and design of urban residential buildings in the local area.
文摘In this paper, 5 high-rise hotels in Xi'an were selected for research, their energy consumption data from 2015 to 2016 were collected and analyzed, their comprehensive energy consumption per unit area was compared by using the standard coal coefficient, and their energy use characteristics and influencing factors were obtained. The test analyzed various parameters of the indoor environment and evaluated the indoor environmental quality according to the specifications and standards. Starting from the perspective of energy use systems, this paper found energy consumption priorities and problems of these hotels, and proposed feasible energy conservation measures, in a view to providing a reference for energy conservation design of high-rise hotels in Xi'an.
基金Funded by the National Natural Science Foundation of China(Nos.52074245,52374416 and 52202029)the China Postdoctoral Science Foundation(No.2022M721058)。
文摘Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.
基金This work is supported by the Zhuhai Science and Technology Project(ZH22036203200015PWC)the Open Foundation of State Key Laboratory of Subtropical Building Science(2022ZB20).
文摘In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar.
基金Project(200413) supported by Communication Science and Technology Fund of Hunan Province,China
文摘In order to study the rheological properties of red stone granular soil,a series of rheological experiments were executed on large tri-axial rheological apparatus.Under 100,200 and 300 kPa confining stress conditions,the rheological tests were carried out.These experiment results showed that the stress conditions,especially the stress level were the critical influencing factors of the rheological deformation properties.Under the low stress level(S=0.1),the granular soil showed the elastic properties,and there was no obvious rheological deformation.Under the middle stress level(0.2<S≤0.6),creep curves showed the linear viscoelastic rheological properties.However,under the high stress level(S>0.8) creep curves showed the non-linear viscous plastic rheological properties.Especially,under the stress level of S=1.0,the accelerated rheological phase of creep curves occurred at early time with a trend of failure.The stress level had obvious effects on the final rheological deformation of the soil sample,and the final rheological deformation increments nonlinearly increased with stress level.The final rheological deformation increment and step was little under low stress level,while it became large under high stress level,which showed the nonlinearly rheological properties of the granular soil.The confining pressure also had direct effects on final rheological deformation,and the final rheological deformation linearly increased with confining pressure increments.
文摘Geological hazard is an adverse geological condition that can cause loss of life and property.Accurate prediction and analysis of geological hazards is an important and challenging task.In the past decade,there has been a great expansion of geohazard detection data and advancement in data-driven simulation techniques.In particular,great efforts have been made in applying deep learning to predict geohazards.To understand the recent progress in this field,this paper provides an overview of the commonly used data sources and deep neural networks in the prediction of a variety of geological hazards.
文摘Old-age building was designed in Ziwu Town,from the aspects of energy saving,environmental protection,full use of solar energy and characteristics of the local climate.In order to meet the requirements of energy conservation,environmental protection and climate adaptability of residential buildings,this paper integrates the construction and design in the prefabricated building design,at the same time,with the consideration of the possibility of expansion and removal of the nursing home,the concept of "modular unit" is put forward.Considering the climatic adaptability of the base position,the utilization of solar energy and the organization of natural ventilation should be paid attention to,also,the rammed soil construction method is added in this design,which can improve the thermal insulation performance of the building enclosure and create a comfortable indoor thermal environment both in winter and summer.In order to realize the object of industrial building construction and design,the prefabricated construction method is used,which produces impact on the surrounding environment more environmentally friendly.The building will be easily built,less restricted,and low-cost.What's more,local material and the advantages of all dry work increase the operability of the project.
基金Project(106023B) supported by Scientific Research Fund of Central South University of Forestry and Technology,China
文摘In order to study the interaction between transverse isotropy rock mass and supporting structure,the laboratory tests for rock sampled from the slope at expressway project were carried out,and the parameters of elasticity for transverse isotropic rock were determined by the uniaxial compression tests for rock sample with different strike of stratification plane.Then,based on the relationship of stress-stain for transverse isotropic rock mass,the analytical model was established for the interaction between transverse isotropic rock mass and frame beam with pre-stressed anchor cable.Furthermore,the conception of the best anchorage-angle in pre-stressed anchor cable was proposed.At last,the parameters of the interaction between transverse isotropy rock mass and frame beam with pre-stressed anchor cable were investigated by finite element method,and the best anchorage-angle in pre-stressed anchor cable was obtained.The rules of the influence of the directivity of stratification plane on supporting structure were determined.The results show that the analytical model and numerical method on the design of pre-stressed anchor cable with frame beam supporting for transverse isotropy rock slope are reasonable and reliable in practical engineering design.
基金Project(50078006) supported by the National Natural Science Foundation of China
文摘Vibration equations of time-varying system are transformed to the form which is suitable to precise integration algorithm.Precision analysis and computation efficiency of new algorithm are implemented.The following conclusions can be got.Choosing matrixes M,G and K is certainly flexible.We can place left side of nonlinear terms of vibration equations of time-varying system into right side of equations in precise integration algorithms.The key of transformation from vibration equations of time-varying system to first order differential equations is to form matrix H,which should be assured to be nonsingular.With suitable disposal,precision and computation efficiency of precise integration algorithms are greatly larger than those of general methods.
基金Project(50578027) supported by the National Natural Science Foundation of China
文摘The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.
基金Project supported by the Science and Technology of Department of Communications of Liaoning Province (Grant No.200514)the Science and Technology of Department of Education of Liaoning Province (Grant No.L2010378)
文摘Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone.
基金supported by the National Natural Science Foundation of China(Grant No.41877251,Li,https://www.nsfc.gov.cn/)the Key Scientific Research Projects of Colleges and Universities in Henan Province(Grant No.22A560021,Yang,http://jyt.henan.gov.cn/,Grant No.23A560014,Cheng,http://jyt.henan.gov.cn/)+1 种基金the Key Scientific and Technological Support Projects of Tianjin Key R&D Plan(Grant No.19YFZCSF00820,Li,https://kxjs.tj.gov.cn/)the Special Fund for Basic Scientific Research and Young Backbone Teachers of Zhongyuan University of Technology(K2020QN015,2020XQG14,Cheng,https://www.zut.edu.cn/).
文摘Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber.The tests have been conducted to analyze the liquid plastic limit,the particle distribution and the free expansion rate.The results show that:(1)With an increase in the cement-jute fiber content,the free expansion rate of the modified expansive soil gradually decreases,however,such a rate rebounds when the fiber content exceeds 0.5%and the cement content exceeds 6%.(2)With an increase in the cement percentage,the particle unevenness coefficient(Cu)and curvature coefficient(Cc)of the modified expansive soil tend to grow gradually.The Cc coefficient reaches 1.0 when the cement content is 6%.The unevenness coefficient of 16 soil samples is greater than 5.0,however,the Cu coefficient decreases when the cement content reaches 6%.(3)The plastic limit of soil increases as the cement content is made higher,while the liquid limit and plastic index decrease gradually.When the content of the modified material is 2%+0.1%~2%+0.7%(Cement content+jute fiber content),the change of particle size distribution is most obvious.(4)When the contents of cement and jute fiber are is 6%and 0.5%,respectively,the modification induced in the physical properties of soil samples corresponds to the best case.
基金Heilongjiang Provincial Key Research and Development Program Project,Grant/Award Number:JD2023SJ46National Natural Science Foundation of China,Grant/Award Number:U20A20318+3 种基金General program of China Post doctoral Fund,Grant/Award Number:2021M690946Major Science and Technology Project of Ministry of Water Resources,Grant/Award Number:SKS-2022095Heilongjiang Provincial Research Institutes Scientific Research Business Fund Project,Grant/Award Number:CZKYF2023-1-A009General program of China Postdoctoral Fund(2021M690946).
文摘In seasonal frozen soil,freezing and thawing can change the physical and mechanical properties and affect slope stability.There are complex moisture conditions in the main water transfer canal.A study of the hydrothermal evolution of canals with different initial water contents under the action of freezing and thawing is of great importance for the prevention and control of canal slope slides.Hydrothermal coupling models are the key to revealing the canal's hydrothermal evolution.As some of the modeling parameters in the current hydrothermal coupling model are based on empirical values,particularly those in the van Genuchten equation,which are not necessarily related to soil properties,they are not suitable for analyzing the hydrothermal evolution of canals.This paper determines the soil-water characteristic curve from the cumulative curve of particle gradation in the subsoil,and then determines the hydraulic parameters of the subsoil using the VG model,which then corrects the hydrothermal coupling model.The method of modifying the hydrothermal coupling model is original,which makes the model more realistically reflect drainage soil characteristics.During freezing and thawing of channel slopes with different initial water contents(21%,25%,29%,33%,37%,and 41%),temperature field,water field,and ice content distributions were investigated.Using the V-G model,the optimal parameters for canal subsoil were a=0.06,n=1.2,and m=0.17,and temperature distribution trends between canals with different water contents were basically similar.Water will accumulate at the bottom as the liquid water content increases at the canal boundary.
基金We wish to thank the financial support from the National Natural Science Foundation of China for the project No.51476120from the Nat-ural Science Foundation of Liaoning Province for the project No.2020-CSLH-43+1 种基金Mr.Liang Tong also thanks the support from the China Schol-arship Council(CSC)and the Fonds de Recherche du Québec-Nature et Technologies(FRQNT)for the PBEEE fellowship(No.203790)Yi Zong also thanks to the International Network Programmne supported by the Danish Agency for Higher Education and Science(No.8073-00026B)for the project PRESS-Proactive Energy Management Systems for Power-to-Heat and Power-to-Gas Solutions.We also appreciate Dr.Feng Ye for his assistance on artificial neural network programming.
文摘The pressure swing adsorption(PSA)system is widely applied to separate and purify hydrogen from gaseous mixtures.The extended Langmuir equation fitted from the extended Langmuir-Freundlich isotherm has been used to predict the adsorption isothermal of hydrogen and methane on the zeolite 5A adsorbent bed.A six-step two-bed PSA model for hydrogen purification is developed and validated by comparing its simulation results with other works.The effects of the adsorption pressure,the P/F ratio,the adsorption step time and the pressure equalization time on the performance of the hydrogen purification system are studied.A four-step two-bed PSA model is taken into consideration,and the six-step PSA system shows higher about 13%hydrogen recovery than the four-step PSA system.The performance of the vacuum pressure swing adsorption(VPSA)system is compared with that of the PSA system,the VPSA system shows higher hydrogen purity than the PSA system.Based on the validated PSA model,a dataset has been produced to train the artificial neural network(ANN)model.The effects of the number of neurons in the hidden layer and the number of samples used for training ANN model on the predicted performance of ANN model are investigated.Then,the well-trained ANN model with 6 neurons in the hidden layer is applied to predict the performance of the PSA system for hydrogen purification.Multi-objective optimization of hydrogen purification system is performed based on the trained ANN model.The artificial neural network can be considered as a very effective method for predicting and optimizing the performance of the PSA system for hydrogen purification.