To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial co...To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial compression load and low reversed cyclic loading,which imitated low to moderate earthquake force.The seismic behavior of specially shaped column joints with X-shaped reinforcement in terms of bearing capacity,displacement,ductility,hysteretic curve,stiffness degradation and energy dissipation was studied and compared to that without Xshaped reinforcement in joint core region.With the damage estimation model,the accumulated damage was analyzed.The shearing capacity formula of specially shaped column joints reinforced by X-shaped reinforcement was proposed with a simple form.The test results show that X-shaped reinforcement is an effective measure for improving the seismic behavior of specially shaped column joints including deformation behavior,ductility and hysteretic characteristic.All specimens were damaged with gradual stiffness degeneration.In addition,X-shaped reinforcement in the joint core region is an effective way to lighten the degree of cumulated damage.The good seismic performance obtained from the specially shaped column joint with X-shaped reinforcement can be used in engineering applications.The test value is higher than the calculated value,which indicates that the formula is safe for the design of specially shaped column joints.展开更多
The stress-strain curves of confined concrete were obtained based on tests of seven cross-shaped columns confined by stirrups under axial load. The experiment results showed that the strength and deformation of confin...The stress-strain curves of confined concrete were obtained based on tests of seven cross-shaped columns confined by stirrups under axial load. The experiment results showed that the strength and deformation of confined concrete can be enhanced effectively by stirrups for cross-shaped columns. Compared with the non-confined concrete, when the stirrup characteristic value is in the range of 0.046-0.230, the confined concrete compressive strengths has an increase of 8%-43%, and the strain corresponding to the peak stress of confined concrete has an increase of 25%-195%. According to the test results, the effects of stirrup characteristic and stirrup spacing on the compressive strength and strain of confined concrete were analysed. It is shown that the compressive strength of confined concrete has a linear relationship with the product of stirrup characteristic value and stirrup effective restraint coefficient, and the strain corresponding to the peak stress of confined concrete has a nonlinear relationship with the product of stirrup characteristic value and stirrup effective restraint coefficient. The stress-strain curve equation of confined concrete was proposed for cross-shaped columns, and the calculated curves are in good agreement with the experimental curves.展开更多
A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate ...A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate the frictional resistance between the concrete core and the cementsoil. Two model piles and twenty-four full-scale piles were tested to examine the bearing behavior of single pile. Laboratory and model tests results indicate that the cohesive strength is large enough to ensure the interaction between core pile and the outer cement-soil. The full-scale test results show that the SDCM piles exhibit similar bearing behavior to bored and cast-in-place concrete piles. In general, with the rational composite structure the SDCM piles can transmit the applied load effectively, and due to the addition of the stiffer core, the SDCM piles possess high bearing capacity. Based on the findings of these experimental investigations and theoretical analysi , a practical design method is developed to predict the vertical bearing capacity of SDCM pile.展开更多
The energy efficiency monitoring is an essential precondition for ground source heat pump system's controlling and energy saving operation. Based on the data monitoring applied in the school building, this work is...The energy efficiency monitoring is an essential precondition for ground source heat pump system's controlling and energy saving operation. Based on the data monitoring applied in the school building, this work is focused on the parameters acquisition and operation analysis of the GSHP system in Tangshan. Results show the average COPs(coefficient of performance) are2.85 and 2.70 in summer and winter, respectively, and heat(cold) unbalance underground existed after whole year operation. The analysis of data also indicates that the direct borehole air-conditioning saved some power consumption obviously in the early stage of summer and energy saving of the GSHP system depended remarkably on its operation and management level. Besides the observation points of ground temperature are laid for a large-scale GSHP system, and the hydraulic balance of the pipes group needs to be concerned specially in safeguarding better reliability.展开更多
Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil...Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil-water interaction mechanism of the debris flows were analyzed from both macroscopic and microscopic points of view respectively using high digital imaging equipment and micro-structure analysis software Geodip. The test results indicate that the forming process of debris flow mainly consists of three stages, namely the infiltration and softening stage, the overall slide stage, and debris flow stage. The essence of simulated coarse sand slope forming debris flow is that local fluidization cause slope to wholly slide. The movement of small particles forms a transient stagnant layer with increasing saturation, causing soil shear strength lost and local fluidization. When the driving force of the saturated soil exceeds the resisting force, debris flow happens on the coarse sand slope immediately.展开更多
Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the s...Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the structure under seismic action. In the centrifuge test, a high-speed microscopic camera was installed in the structure model, by which the movements of particles around the structure were monitored. Then, a two-dimensional digital image processing technology was used to analyze the microstructure of saturated sand during the shaking event. Herein, a numerical simulation of the centrifuge experiment was conducted using a two-phase(solid and fl uid) fully coupled distinct element code. This code incorporates a particle-fl uid coupling model by means of a "fi xed coarse-grid" fl uid scheme in PFC3D(Particle Flow Code in Three Dimensions), with the modeling parameters partially calibrated based on earlier studies. The physical and numerical models both indicate the uplifts of the shallow-buried structure and the sharp rise in excess pore pressure. The corresponding micro-scale responses and explanations are provided. Overall, the uplift response of an underground structure and the occurrence of liquefaction in saturated sand are predicted successfully by DEM modeling. However, the dynamic responses during the shaking cannot be modeled accurately due to the restricted computer power.展开更多
To recycle the sludge resource from sewage treatment plants and solve the problem of odor pollution, the sludge was converted into an adsorbent by carbonized pyrolysis and the process was optimized by orthogonal exper...To recycle the sludge resource from sewage treatment plants and solve the problem of odor pollution, the sludge was converted into an adsorbent by carbonized pyrolysis and the process was optimized by orthogonal experiments. The capability for odor removal as well as the structure of the adsorbent was studied with HzS as a target pollutant. The results indicate that the main factor affecting the deodorization performance of the adsorbent is the activating time. The sludge adsorbent sample SAC1 prepared under optimum conditions exhibits the best deodorization performance with a H2S breakthrough time of 58 min and an iodine value nearly that of the coal activated carbon. The breakthrough time of H2S is much longer than that on the coal activated carbon. On the other hand, characterization results from X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and scanning electron microscope (SEM) techniques show that SAC1 is composed of mainly graphite carbon with lower oxygen content on the surface. The bulk of SAC 1 exhibits a honeycomb structure with well developed porosity and a high specific surface area of 120.47 m^2· g^-1, with the average pore diameter being about 5 nm. Such a structure is in favor of H2S adsorption. Moreover, SAC 1 is detected to contain various metal elements such as Zn, Fe, Mg, etc., leading to a superior deodorization property to that of coal activated carbon.展开更多
A leak detection method based on Bayesian theory and Fisher’s law was developed for water distribution systems. A hydraulic model was associated with the parameters of leaks (location, extent). The randomness of para...A leak detection method based on Bayesian theory and Fisher’s law was developed for water distribution systems. A hydraulic model was associated with the parameters of leaks (location, extent). The randomness of parameter values was quantified by probability density function and updated by Bayesian theory. Values of the parameters were estimated based on Fisher’s law. The amount of leaks was estimated by back propagation neural network. Based on flow characteristics in water distribution systems, the location of leaks can be estimated. The effectiveness of the proposed method was illustrated by simulated leak data of node pressure head and flow rate of pipelines in a test pipe network, and the leaks were spotted accurately and renovated on time.展开更多
Recently, a four-dimensional lattice spring model(4D-LSM) was developed to overcome the Poisson’s ratio limitation of the classical LSM by introducing the fourth-dimensional spatial interaction. In this work, some as...Recently, a four-dimensional lattice spring model(4D-LSM) was developed to overcome the Poisson’s ratio limitation of the classical LSM by introducing the fourth-dimensional spatial interaction. In this work, some aspects of the 4D-LSM on solving problems in geomechanics are investigated, such as the ability to reproduce elastic properties of geomaterials, the capability of solving heterogeneous problems,the accuracy on modelling stress wave propagation, the ability to solve dynamic fracturing and the parallel computational efficiency. Our results indicate that the 4D-LSM is promising to deal with problems in geomechanics.展开更多
基金Supported by National Natural Science Foundation of China (No. 50878141)Hebei Natural Science Foundation,China (No. E2011202013)High School of Hebei Science and Technology Research Youth Foundation,China(No. Q2012083)
文摘To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial compression load and low reversed cyclic loading,which imitated low to moderate earthquake force.The seismic behavior of specially shaped column joints with X-shaped reinforcement in terms of bearing capacity,displacement,ductility,hysteretic curve,stiffness degradation and energy dissipation was studied and compared to that without Xshaped reinforcement in joint core region.With the damage estimation model,the accumulated damage was analyzed.The shearing capacity formula of specially shaped column joints reinforced by X-shaped reinforcement was proposed with a simple form.The test results show that X-shaped reinforcement is an effective measure for improving the seismic behavior of specially shaped column joints including deformation behavior,ductility and hysteretic characteristic.All specimens were damaged with gradual stiffness degeneration.In addition,X-shaped reinforcement in the joint core region is an effective way to lighten the degree of cumulated damage.The good seismic performance obtained from the specially shaped column joint with X-shaped reinforcement can be used in engineering applications.The test value is higher than the calculated value,which indicates that the formula is safe for the design of specially shaped column joints.
基金Supported by National Natural Science Foundation of China (No. 50878141)
文摘The stress-strain curves of confined concrete were obtained based on tests of seven cross-shaped columns confined by stirrups under axial load. The experiment results showed that the strength and deformation of confined concrete can be enhanced effectively by stirrups for cross-shaped columns. Compared with the non-confined concrete, when the stirrup characteristic value is in the range of 0.046-0.230, the confined concrete compressive strengths has an increase of 8%-43%, and the strain corresponding to the peak stress of confined concrete has an increase of 25%-195%. According to the test results, the effects of stirrup characteristic and stirrup spacing on the compressive strength and strain of confined concrete were analysed. It is shown that the compressive strength of confined concrete has a linear relationship with the product of stirrup characteristic value and stirrup effective restraint coefficient, and the strain corresponding to the peak stress of confined concrete has a nonlinear relationship with the product of stirrup characteristic value and stirrup effective restraint coefficient. The stress-strain curve equation of confined concrete was proposed for cross-shaped columns, and the calculated curves are in good agreement with the experimental curves.
文摘A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate the frictional resistance between the concrete core and the cementsoil. Two model piles and twenty-four full-scale piles were tested to examine the bearing behavior of single pile. Laboratory and model tests results indicate that the cohesive strength is large enough to ensure the interaction between core pile and the outer cement-soil. The full-scale test results show that the SDCM piles exhibit similar bearing behavior to bored and cast-in-place concrete piles. In general, with the rational composite structure the SDCM piles can transmit the applied load effectively, and due to the addition of the stiffer core, the SDCM piles possess high bearing capacity. Based on the findings of these experimental investigations and theoretical analysi , a practical design method is developed to predict the vertical bearing capacity of SDCM pile.
基金Project(2012BAJ06B04)supported by"12th Five-Year Plan"National science and Technology,ChinaProject(2014-228)supported by Department of Housing and Urban Rural Development of Hebei,China
文摘The energy efficiency monitoring is an essential precondition for ground source heat pump system's controlling and energy saving operation. Based on the data monitoring applied in the school building, this work is focused on the parameters acquisition and operation analysis of the GSHP system in Tangshan. Results show the average COPs(coefficient of performance) are2.85 and 2.70 in summer and winter, respectively, and heat(cold) unbalance underground existed after whole year operation. The analysis of data also indicates that the direct borehole air-conditioning saved some power consumption obviously in the early stage of summer and energy saving of the GSHP system depended remarkably on its operation and management level. Besides the observation points of ground temperature are laid for a large-scale GSHP system, and the hydraulic balance of the pipes group needs to be concerned specially in safeguarding better reliability.
基金Funded by National Natural Science Foundation of China(Grant No.41272296)
文摘Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil-water interaction mechanism of the debris flows were analyzed from both macroscopic and microscopic points of view respectively using high digital imaging equipment and micro-structure analysis software Geodip. The test results indicate that the forming process of debris flow mainly consists of three stages, namely the infiltration and softening stage, the overall slide stage, and debris flow stage. The essence of simulated coarse sand slope forming debris flow is that local fluidization cause slope to wholly slide. The movement of small particles forms a transient stagnant layer with increasing saturation, causing soil shear strength lost and local fluidization. When the driving force of the saturated soil exceeds the resisting force, debris flow happens on the coarse sand slope immediately.
基金National Natural Science Foundation of China under Grant Nos.41272296 and 51208294
文摘Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the structure under seismic action. In the centrifuge test, a high-speed microscopic camera was installed in the structure model, by which the movements of particles around the structure were monitored. Then, a two-dimensional digital image processing technology was used to analyze the microstructure of saturated sand during the shaking event. Herein, a numerical simulation of the centrifuge experiment was conducted using a two-phase(solid and fl uid) fully coupled distinct element code. This code incorporates a particle-fl uid coupling model by means of a "fi xed coarse-grid" fl uid scheme in PFC3D(Particle Flow Code in Three Dimensions), with the modeling parameters partially calibrated based on earlier studies. The physical and numerical models both indicate the uplifts of the shallow-buried structure and the sharp rise in excess pore pressure. The corresponding micro-scale responses and explanations are provided. Overall, the uplift response of an underground structure and the occurrence of liquefaction in saturated sand are predicted successfully by DEM modeling. However, the dynamic responses during the shaking cannot be modeled accurately due to the restricted computer power.
文摘To recycle the sludge resource from sewage treatment plants and solve the problem of odor pollution, the sludge was converted into an adsorbent by carbonized pyrolysis and the process was optimized by orthogonal experiments. The capability for odor removal as well as the structure of the adsorbent was studied with HzS as a target pollutant. The results indicate that the main factor affecting the deodorization performance of the adsorbent is the activating time. The sludge adsorbent sample SAC1 prepared under optimum conditions exhibits the best deodorization performance with a H2S breakthrough time of 58 min and an iodine value nearly that of the coal activated carbon. The breakthrough time of H2S is much longer than that on the coal activated carbon. On the other hand, characterization results from X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and scanning electron microscope (SEM) techniques show that SAC1 is composed of mainly graphite carbon with lower oxygen content on the surface. The bulk of SAC 1 exhibits a honeycomb structure with well developed porosity and a high specific surface area of 120.47 m^2· g^-1, with the average pore diameter being about 5 nm. Such a structure is in favor of H2S adsorption. Moreover, SAC 1 is detected to contain various metal elements such as Zn, Fe, Mg, etc., leading to a superior deodorization property to that of coal activated carbon.
基金Supported by National Natural Science Foundation of China (No. 50278062 and 50578108)Science and Technology Innovation Funds Project of Tianjin, China (No. 08FDZDSF03200)
文摘A leak detection method based on Bayesian theory and Fisher’s law was developed for water distribution systems. A hydraulic model was associated with the parameters of leaks (location, extent). The randomness of parameter values was quantified by probability density function and updated by Bayesian theory. Values of the parameters were estimated based on Fisher’s law. The amount of leaks was estimated by back propagation neural network. Based on flow characteristics in water distribution systems, the location of leaks can be estimated. The effectiveness of the proposed method was illustrated by simulated leak data of node pressure head and flow rate of pipelines in a test pipe network, and the leaks were spotted accurately and renovated on time.
基金financially supported by the National Natural Science Foundation of China (Grant No. 1177020290)
文摘Recently, a four-dimensional lattice spring model(4D-LSM) was developed to overcome the Poisson’s ratio limitation of the classical LSM by introducing the fourth-dimensional spatial interaction. In this work, some aspects of the 4D-LSM on solving problems in geomechanics are investigated, such as the ability to reproduce elastic properties of geomaterials, the capability of solving heterogeneous problems,the accuracy on modelling stress wave propagation, the ability to solve dynamic fracturing and the parallel computational efficiency. Our results indicate that the 4D-LSM is promising to deal with problems in geomechanics.