期刊文献+
共找到1,321篇文章
< 1 2 67 >
每页显示 20 50 100
Overview of the focus issue on ACAG8 of enhancing earthquake research through geomagnetic and seismic data analysis
1
作者 Frédéric Masson Omar M.Saad +1 位作者 Mohamed Abdel Zaher Xiaodong Song 《Earthquake Science》 2025年第2期79-80,共2页
The Arab Conference on Astronomy and Geophysics is a prominent biennial event that has been convening for 16 years.Hosted by the National Research Institute of Astronomy and Geophysics(NRIAG),the conference serves as ... The Arab Conference on Astronomy and Geophysics is a prominent biennial event that has been convening for 16 years.Hosted by the National Research Institute of Astronomy and Geophysics(NRIAG),the conference serves as a unique platform for presenting and discussing the latest advancements in astronomy and geophysics.Attended by representatives from Arab and international institutions,the conference facilitates knowledge sharing,collaborative research,and the dissemination of cuttingedge scientific findings.The 8th edition,held from October 9 to 12,2023,brought together leading scientists,researchers,and academics from across the globe.Participants included keynote speakers. 展开更多
关键词 EARTHQUAKE SEISMIC SPEAKERS
在线阅读 下载PDF
Statistical characteristics and classification of ionospheric mid-latitude trough as revealed by the observations of DMSP-F18
2
作者 Yi Liu JiuHou Lei +1 位作者 FuQing Huang Su Zhou 《Earth and Planetary Physics》 EI CAS 2025年第1期137-147,共11页
Statistical characteristics and the classification of the topside ionospheric mid-latitude trough are systemically analyzed,using observations from the Defense Meteorological Satellite Program F18(DMSP-F18)satellite.T... Statistical characteristics and the classification of the topside ionospheric mid-latitude trough are systemically analyzed,using observations from the Defense Meteorological Satellite Program F18(DMSP-F18)satellite.The data was obtained at an altitude of around 860 km in near polar orbit,throughout 2013.Our study identified the auroral boundary based on the in-situ electron density and electron spectrum,allowing us to precisely determine the location of the mid-latitude trough.This differs from most previous works,which only use Total Electron Content(TEC)or in-situ electron density.In our study,the troughs exhibited a higher occurrence rate in local winter than in summer,and extended to lower latitudes with increasing geomagnetic activity.It was found that the ionospheric mid-latitude trough,which is associated with temperature changes or enhanced ion drift,exhibited distinct characteristics.Specifically,the ionospheric mid-latitude troughs related to electron temperature(Te)peak were located more equatorward of auroral oval boundary in winter than in summer.The ionospheric mid-latitude troughs related to Te-maximum were less frequently observed at 60−70°S magnetic latitude and 90−240°E longitude.Furthermore,the troughs related to ion temperature(Ti)maximums were observed at relatively higher latitudes,occurring more frequently in winter.In addition,the troughs related to ion velocity(Vi)maximums could be observed in all seasons.The troughs with the maximum-Ti and maximum-Vi were located closer to the equatorward boundary of the auroral oval at the nightside,and in both hemispheres.This implies that enhanced ion drift velocity contributes to increased collisional frictional heating and enhanced ion temperatures,resulting in a density depletion within the trough region. 展开更多
关键词 topside ionosphere mid-latitude trough ionospheric main trough auroral oval boundary temperature maximum
在线阅读 下载PDF
Comparative analysis of empirical and deep learning models for ionospheric sporadic E layer prediction
3
作者 BingKun Yu PengHao Tian +6 位作者 XiangHui Xue Christopher JScott HaiLun Ye JianFei Wu Wen Yi TingDi Chen XianKang Dou 《Earth and Planetary Physics》 EI CAS 2025年第1期10-19,共10页
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,... Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular. 展开更多
关键词 ionospheric sporadic E layer radio occultation ionosondes numerical model deep learning model artificial intelligence
在线阅读 下载PDF
An embedded electron current layer observed at the edge of the plasma sheet in the Earth’s magnetotail
4
作者 ChenChen Zhan RongSheng Wang +2 位作者 QuanMing Lu San Lu XinMin Li 《Earth and Planetary Physics》 EI CAS 2025年第1期148-158,共11页
The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sh... The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sheet.The ions were demagnetized inside the electron current layer,but the electrons were still frozen in with the magnetic field line.Thus,this decoupling of ions and electrons gave rise to a strong Hall electric field,which could be the reason for the formation of the embedded thin current layer.The magnetized electrons,the absence of the nongyrotropic electron distribution,and negligible energy dissipation in the layer indicate that magnetic reconnection had not been triggered within the embedded thin current layer.The highly asymmetric plasma on the two sides of the current layer and low magnetic shear across it could suppress magnetic reconnection.The observations indicate that the embedded electric current layer,probably generated by the Hall electric field,even down to electron scale,is not a sufficient condition for magnetic reconnection. 展开更多
关键词 MAGNETOTAIL plasma sheet magnetic reconnection
在线阅读 下载PDF
Deformations at Earth’s dayside magnetopause during quasi-radial IMF conditions:Global kinetic simulations and Soft X-ray Imaging 被引量:3
5
作者 ZhongWei Yang RiKu Jarvinen +7 位作者 XiaoCheng Guo TianRan Sun Dimitra Koutroumpa George K.Parks Can Huang BinBin Tang QuanMing Lu Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期59-69,共11页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Eart... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Earth's magnetosphere to the solar wind(SW)impact via simultaneous in situ magnetosheath plasma and magnetic field measurements,X-Ray images of the magnetosheath and magnetic cusps,and UV images of global auroral distributions.Magnetopause deformations associated with magnetosheath high speed jets(HSJs)under a quasi-parallel interplanetary magnetic field condition are studied using a threedimensional(3-D)global hybrid simulation.Soft X-ray intensity calculated based on both physical quantities of solar wind proton and oxygen ions is compared.We obtain key findings concerning deformations at the magnetopause:(1)Magnetopause deformations are highly coherent with the magnetosheath HSJs generated at the quasi-parallel region of the bow shock,(2)X-ray intensities estimated using solar wind h+and self-consistentO7+ions are consistent with each other,(3)Visual spacecraft are employed to check the discrimination ability for capturing magnetopause deformations on Lunar and polar orbits,respectively.The SMILE spacecraft on the polar orbit could be expected to provide opportunities for capturing the global geometry of the magnetopause in the equatorial plane.A striking point is that SMILE has the potential to capture small-scale magnetopause deformations and magnetosheath transients,such as HSJs,at medium altitudes on its orbit.Simulation results also demonstrate that a lunar based imager(e.g.,Lunar Environment heliospheric X-ray Imager,LEXI)is expected to observe a localized brightening of the magnetosheath during HSJ events in the meridian plane.These preliminary results might contribute to the pre-studies for the SMILE and LEXI missions by providing qualitative and quantitative soft X-ray estimates of dayside kinetic processes. 展开更多
关键词 collisionless shock SMILE mission FORESHOCK
在线阅读 下载PDF
Optimization of production well patterns for natural gas hydrate reservoir: Referring to the results from production tests and numerical simulations
6
作者 Lang-feng Mu Hao-tian Liu +2 位作者 Chi Zhang Yi Zhang Hai-long Lu 《China Geology》 2025年第1期39-57,共19页
Natural gas hydrate is a clean energy source with substantial resource potential.In contrast to conventional oil and gas,natural gas hydrate exists as a multi-phase system consisting of solids,liquids,and gases,which ... Natural gas hydrate is a clean energy source with substantial resource potential.In contrast to conventional oil and gas,natural gas hydrate exists as a multi-phase system consisting of solids,liquids,and gases,which presents unique challenges and complicates the mechanisms of seepage and exploitation.Both domestic and international natural gas hydrate production tests typically employ a single-well production model.Although this approach has seen some success,it continues to be hindered by low production rates and short production cycles.Therefore,there is an urgent need to explore a new well network to significantly increase the production of a single well.This paper provides a comprehensive review of the latest advancements in natural gas hydrate research,including both laboratory studies and field tests.It further examines the gas production processes and development outcomes for single wells,dual wells,multi-branch wells,and multi-well systems under conditions of depressurization,thermal injection,and CO_(2) replacement.On this basis,well types and well networks suitable for commercial exploitation of natural gas hydrate were explored,and the technical direction of natural gas hydrate development was proposed.The study shows that fully exploiting the flexibility of complex structural wells and designing a well network compatible with the reservoir is the key to improving production from a single well.Moreover,multi-well joint exploitation is identified as an effective strategy for achieving large-scale,efficient development of natural gas hydrate. 展开更多
关键词 Gas Hydrate Production DEPRESSURIZATION Heat Injection REPLACEMENT Multi-Branch Well Well patterns Hydrate exploration engineering
在线阅读 下载PDF
Distribution, characteristics, metallogenic processes and prospecting potential of terrestrial brine-type lithium deposits in the world and lithium demand situation
7
作者 Dian-he Liu Cheng-lin Liu +1 位作者 Chun-lian Wang Xiao-can Yu 《China Geology》 2025年第1期1-25,共25页
In response to the rise of the energy storage industries such as new energy vehicles and the wide application of lithium in various fields worldwide,the global demand for lithium resources has been in explosive growth... In response to the rise of the energy storage industries such as new energy vehicles and the wide application of lithium in various fields worldwide,the global demand for lithium resources has been in explosive growth.In order to further comprehensively understand the global supply and demand pattern,development and utilization status,genesis of ore deposits and other characteristics of lithium resources,based on the achievements of many researchers at home and abroad,this paper systematically summarized the lithium supply and demand situation,resource endowment,deposit classification and distribution,typical geological characteristics,metallogenic factors and metallogenic regularity of terrestrial brine-type lithium deposits which are the main types of development and utilization all over the world.The review shows that brine-type lithium resource and(or)reserves in the plateau salt lakes are huge and play an important role.In addition,the mineralization potential of the underground brine-type lithium deposit is broad worldwide.The potential resources of underground brines are enormous,and the geothermal spring water type is also worthy of attention.Brine lithium deposits are mainly controlled by the subduction and collision of regional plate tectonics,arid climate and provenance conditions.Strengthening of the scientific research on underground brines in the future is expected to provide another significant support for the global demand for lithium resources. 展开更多
关键词 Brine in plateau salt lake Underground brine Geothermal spring brine Terrestrial brine classification Lithium migration mechanism Brine genesis Mineral exploration engineering Lithium enrich mechanism
在线阅读 下载PDF
Upper crustal azimuthal anisotropy and seismogenic tectonics of the Hefei segment of the Tan-Lu Fault Zone from ambient noise tomography
8
作者 Cheng Li HuaJianYao +4 位作者 Song Luo HaiJiang Zhang LingLi Li XiaoLi Wang ShengJun Ni 《Earth and Planetary Physics》 2025年第2期253-265,共13页
The Tan-Lu Fault Zone is a large NNE-trending fault zone that has a substantial effect on the development of eastern China and its earthquake disaster prevention efforts. Aiming at the azimuthally anisotropic structur... The Tan-Lu Fault Zone is a large NNE-trending fault zone that has a substantial effect on the development of eastern China and its earthquake disaster prevention efforts. Aiming at the azimuthally anisotropic structure in the upper crust and seismogenic tectonics in the Hefei segment of this fault, we collected phase velocity dispersion data of fundamental mode Rayleigh waves from ambient noise cross-correlation functions of ~400 temporal seismographs in an area of approximately 80 × 70 km along the fault zone. The period band of the dispersion data was ~0.5–10 s. We inverted for the upper crustal three-dimensional(3-D) shear velocity model with azimuthal anisotropy from the surface to 10 km depth by using a 3-D direct azimuthal anisotropy inversion method. The inversion result shows the spatial distribution characteristics of the tectonic units in the upper crust. Additionally, the deformation of the Tan-Lu Fault Zone and its conjugated fault systems could be inferred from the anisotropy model. In particular, the faults that have remained active from the early and middle Pleistocene control the anisotropic characteristics of the upper crustal structure in this area. The direction of fast axes near the fault zone area in the upper crust is consistent with the strike of the faults, whereas for the region far away from the fault zone, the direction of fast axes is consistent with the direction of the regional principal stress caused by plate movement. Combined with the azimuthal anisotropy models in the deep crust and uppermost mantle from the surface wave and Pn wave, the different anisotropic patterns caused by the Tan-Lu Fault Zone and its conjugated fault system nearby are shown in the upper and lower crust. Furthermore,by using the double-difference method, we relocated the Lujiang earthquake series, which contained 32 earthquakes with a depth shallower than 10 km. Both the Vs model and earthquake relocation results indicate that earthquakes mostly occurred in the vicinity of structural boundaries with fractured media, with high-level development of cracks and small-scale faults jammed between more rigid areas. 展开更多
关键词 ambient noise tomography azimuthal anisotropy upper crust seismogenic structure the Tan-Lu Fault Zone Hefei segment
在线阅读 下载PDF
Lightning-induced neutrons as a possible source of charged particles in the Earth's inner radiation belt
9
作者 QuanQi Shi ChenYao Han +4 位作者 Qiu-Gang Zong Alexander Degeling Shuo Wang SuiYan Fu PengZhi He 《Earth and Planetary Physics》 2025年第2期444-451,共8页
The Van Allen radiation belts are doughnut-shaped zones surrounding Earth, filled with highly energetic charged particles whose sources or loss mechanisms have been investigated for decades. As for the inner belt, cos... The Van Allen radiation belts are doughnut-shaped zones surrounding Earth, filled with highly energetic charged particles whose sources or loss mechanisms have been investigated for decades. As for the inner belt, cosmic ray albedo neutron decay(CRAND),radial diffusion, and local acceleration have been considered principal sources of electrons, whereas protons are predominantly from CRAND and solar protons. In this article, lightning-induced neutrons from Earth's upper atmosphere are suggested as a possible source of protons and electrons in the inner radiation belt. These terrestrial neutrons can contribute to the inner belt population by undergoing nuclear decay. Several approaches are proposed and discussed to evaluate the potential contribution of lightning-induced neutrons to the inner belt, including magnitude estimation, Monte Carlo simulations, and in situ observations. This article discusses some avenues of further study to determine the contribution of lightning-induced neutrons to the inner radiation belt. 展开更多
关键词 Van Allen radiation belts cosmic ray albedo neutron decay(CRAND) LIGHTNING neutrons
在线阅读 下载PDF
High-resolution upper crustal S-wave velocity structure and seismicity distribution around the junction of the Zemuhe and Xiaojiang Fault Zones, Southwest China
10
作者 Xin Liu HuaJian Yao +2 位作者 CuiPing Zhao Ying Liu Song Luo 《Earth and Planetary Physics》 2025年第2期225-238,共14页
The Anninghe–Zemuhe Fault and the Xiaojiang Fault are critical active faults along the middle-eastern boundary of the South Chuan–Dian Block. Many researchers have identified these faults as potential strong-earthqu... The Anninghe–Zemuhe Fault and the Xiaojiang Fault are critical active faults along the middle-eastern boundary of the South Chuan–Dian Block. Many researchers have identified these faults as potential strong-earthquake risk zones. In this study, we leveraged a dense seismic array to investigate the high-resolution shallow crust shear wave velocity(Vs) structure beneath the junction of the Zemuhe Fault Zone and the Xiaojiang Fault Zone, one of the most complex parts of the eastern boundary of the South Chuan–Dian Block. We analyzed the distribution of microseismic events detected between November 2022 and February 2023 based on the fine-scale Vs model obtained. The microseismicity in the study region was clustered into three groups, all spatially related to major faults in this region. These microseismic events indicate near-vertical fault planes, consistent with the fault geometry revealed by other researchers.Moreover, these microseismic events are influenced by the impoundment of the downstream Baihetan Reservoir and the complex tectonic stress near the junction of the Zemuhe Fault Zone and the Xiaojiang Fault Zone. The depths of these microseismic events are shallower in the junction zone, whereas moving south along the Xiaojiang Fault Zone, the microseismic events become deeper.Additionally, we compared our fine-scale local Vs model with velocity models obtained by other researchers and found that our model offers greater detail in characterizing subsurface heterogeneity while demonstrating improved reliability in delineating fault systems. 展开更多
关键词 Zemuhe–Xiaojiang Fault Zone shallow crust S-wave velocity ambient noise tomography MICROSEISMICITY
在线阅读 下载PDF
Global hybrid simulations of soft X-ray emissions in the Earth’s magnetosheath 被引量:2
11
作者 Jin Guo TianRan Sun +6 位作者 San Lu QuanMing Lu Yu Lin XueYi Wang Chi Wang RongSheng Wang Kai Huang 《Earth and Planetary Physics》 EI CSCD 2024年第1期47-58,共12页
Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging ... Earth’s magnetopause is a thin boundary separating the shocked solar wind plasma from the magnetospheric plasmas,and it is also the boundary of the solar wind energy transport to the magnetosphere.Soft X-ray imaging allows investigation of the large-scale magnetopause by providing a two-dimensional(2-D)global view from a satellite.By performing 3-D global hybrid-particle-in-cell(hybrid-PIC)simulations,we obtain soft X-ray images of Earth’s magnetopause under different solar wind conditions,such as different plasma densities and directions of the southward interplanetary magnetic field.In all cases,magnetic reconnection occurs at low latitude magnetopause.The soft X-ray images observed by a hypothetical satellite are shown,with all of the following identified:the boundary of the magnetopause,the cusps,and the magnetosheath.Local X-ray emissivity in the magnetosheath is characterized by large amplitude fluctuations(up to 160%);however,the maximum line-of-sight-integrated X-ray intensity matches the tangent directions of the magnetopause well,indicating that these fluctuations have limited impact on identifying the magnetopause boundary in the X-ray images.Moreover,the magnetopause boundary can be identified using multiple viewing geometries.We also find that solar wind conditions have little effect on the magnetopause identification.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission will provide X-ray images of the magnetopause for the first time,and our global hybrid-PIC simulation results can help better understand the 2-D X-ray images of the magnetopause from a 3-D perspective,with particle kinetic effects considered. 展开更多
关键词 MAGNETOPAUSE X-ray emissivity X-ray imaging SMILE global hybrid-PIC simulation
在线阅读 下载PDF
Cascading multi-segment rupture process of the 2023 Turkish earthquake doublet on a complex fault system revealed by teleseismic P wave back projection method 被引量:1
12
作者 Bonan Cao Zengxi Ge 《Earthquake Science》 2024年第2期158-173,共16页
In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back proj... In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks. 展开更多
关键词 2023 Turkish earthquake doublet back projection method cascading segmented rupture process coseismic triggering super-shear ruptures
在线阅读 下载PDF
Ion and electron motions in the outer electron diffusion region of collisionless magnetic reconnection 被引量:1
13
作者 Cong Chang QuanMing Lu +2 位作者 San Lu Kai Huang RongSheng Wang 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期472-478,共7页
Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions ar... Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions are demagnetized,is found to have a two-layer structure:an inner EDR near the reconnection site and an outer EDR that is elongated to nearly 10 ion inertial lengths in the outflow direction.In the inner EDR,the speed of the electron outflow increases when the electrons move away from the X line.In the outer EDR,the speed of the electron outflow first increases and then decreases until the electrons reach the boundary of the outer EDR.In the boundary of the outer EDR,the magnetic field piles up and forms a depolarization front.From the perspective of the fluid,a force analysis on the formation of electron and ion outflows has also been investigated.Around the X line,the electrons are accelerated by the reconnection electric field in the out-of-plane direction.When the electrons move away from the X line,we find that the Lorentz force converts the direction of the accelerated electrons to the x direction,forming an electron outflow.Both electric field forces and electron gradient forces tend to drag the electron outflow.Ion acceleration along the x direction is caused by the Lorentz force,whereas the pressure gradient force tends to decelerate the ion outflow.Although these two terms are important,their effects on ions are almost offset.The Hall electric field force does positive work on ions and is not negligible.The ions are continuously accelerated,and the ion and electron outflow velocities are almost the same near the depolarization front. 展开更多
关键词 collisionless magnetic reconnection electron diffusion region force analysis particle-in-cell simulation
在线阅读 下载PDF
Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes 被引量:28
14
作者 JianHui Tian Yan Luo Li Zhao 《Earth and Planetary Physics》 CSCD 2019年第3期243-252,共10页
We determined focal mechanism solutions of 627 earthquakes of magnitude M ≥ 3.0 in Yunnan from January 2008 to May 2018 by using broadband waveforms recorded by 287 permanent and temporary regional stations. The resu... We determined focal mechanism solutions of 627 earthquakes of magnitude M ≥ 3.0 in Yunnan from January 2008 to May 2018 by using broadband waveforms recorded by 287 permanent and temporary regional stations. The results clearly revealed predominantly strike-slip faulting characteristics for earthquakes in Yunnan, with focal depths concentrated in the top 10 km of the crust. The earthquake mechanisms obtained were combined with the global centroid moment tensor solutions of 80 additional earthquakes from 1976 to 2016 to invert for the regional variations of stress field orientation by using a damped regional-scale stress inversion scheme.Results of the stress field inversion confirmed that the Yunnan region is under a strike–slip stress regime, with both maximum and minimum stress axes being nearly horizontal. The maximum compressional axes are primarily oriented in a northwest-southeast direction, and they experience a clockwise rotation from north to south, whereas the maximum extensional axes are oriented largely northeast-southwest. The maximum compressional axes are in line with the global positioning system–inferred horizontal velocity field and the southeastward escape of the Sichuan–Yunnan Rhombic Block, whereas the maximum extensional axes are consistent with anisotropy derived from SKS splitting. Against the strike–slip background, normal faulting stress regimes can be seen in the Tengchong volcanic area as well as in other areas with complex crisscrossing fault zones. 展开更多
关键词 earthquake FOCAL mechanism stress field INVERSION PRINCIPLE stresses YUNNAN region
在线阅读 下载PDF
Mesoproterozoic Earthquake Events and Breakup of the Sino-Korean Plate 被引量:19
15
作者 QIAO Xiufu GAO Linzhi PENG Yang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第3期385-397,共13页
In the Mesoproterozoic time, the northern part of the Sino-Korean Plate experienced a period of intensive tectonic extension and breakup. 1. An abundance of sedimentary earthquake records is preserved in the Chuanling... In the Mesoproterozoic time, the northern part of the Sino-Korean Plate experienced a period of intensive tectonic extension and breakup. 1. An abundance of sedimentary earthquake records is preserved in the Chuanlinggou, Tuanshanzi and Gaoyuzhuang formations in the Mesoproterozoic Changcheng System (1800-1400 Ma) and in the Mesoproterozoic Wumishan Formation of the Jixian System (1400-1000 Ma). These earthquake records are characterized by various liquefied sand-veins, carbonate microspar and coarser spar veins, limestone dikes, liquefied breccia and various forms of liquefied contorted bedding. This deformation is always associated with synsedimentary faults and igneous activity. 2. Three liquefaction models for soft carbonate sediments are recognized, including liquefaction in laminated carbonate rocks, liquefaction in thin-bedded carbonates and large-scale liquefaction along huge carbonate dikes. 3. Based on the record of earthquake and volcanic activities, the Sino-Korean Plate experienced at least twice intraplate breakups. One occurred between 1800-1400 Ma, and the other occurred at about 1200 Ma. The last breakup resulted in formation of the Yan-Liao aulacogen, a tectonic zone characterized by deeper material vibrancy, active faults, major igneous activity and frequent earthquakes. 展开更多
关键词 earthquake events MESOPROTEROZOIC Sino-Korean Plate breakup intraplate
在线阅读 下载PDF
Surface Rupture of the 1515 Yongsheng Earthquake in Northwest Yunnan, and Its Seismogeological Implications 被引量:14
16
作者 HUANG Xiaolong WU Zhonghai WU Kungang 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第4期1324-1333,共10页
The 1515 M7/4 Yongsheng earthquake is the strongest earthquake historically in northwest Yunnan. However, its time, magnitude and the seismogenic fault have long been a topic of dispute. In order to accurately define ... The 1515 M7/4 Yongsheng earthquake is the strongest earthquake historically in northwest Yunnan. However, its time, magnitude and the seismogenic fault have long been a topic of dispute. In order to accurately define those problems, a 1:50000 active tectonic mapping was carried out along the northern segment of the Chenghai-Binchuan fault zone. The result shows that there is an at least 25 km- long surface rupture and a series of seismic landslides distributed along the Jinguan fault and the Chenghai fault. Radiocarbon dating of the 14C samples indicates that the surface rupture should be a part of the deformation zone caused by the Yongsheng earthquake in the year 1515. The distribution characteristics of this surface rupture indicate that the macroscopic epicenter of the 1515 Yongsheng earthquake may be located near Hongshiya, and the seismogenic fault of this earthquake is the Jinguan- Chenghai fault, the northern part of the Chenghai-Binchuan fault zone. Striations on the surface rupture show that the latest motion of the fault is normal faulting. The maximum co-seismic vertical displacement can be 3.8 m, according to the empirical formula for the fault displacement and moment magnitude relationship, the moment magnitude of the Yongsheng earthquake was Mw 7.3-7.4. Furthermore, combining published age data with the 14C data in this paper reveals that at least four large earthquakes of similar size to the 1515 Yongsheng earthquake, have taken place across the northern segment of the Chenghai-Binchuan fault zone since 17190~50 yr. BP. The in-situ recurrence interval of Mw 7.3-7.4 characteristic earthquakes in Yongsheng along this fault zone is possibly on the order of 6 ka. 展开更多
关键词 historical earthquake earthquake surface rupture normal fault Chenghai-Binchuan fault zone Southeastern margin of the Tibetan Plateau
在线阅读 下载PDF
Spatial distribution and focal mechanism solutions of the Wenchuan earthquake series:Results and implications 被引量:13
17
作者 Chen Cai Chunquan Yu +5 位作者 Kai Tao Xingping Hu Yuan Tian Hao Zhang Xiaofeng Cui Jieyuan Ning 《Earthquake Science》 CSCD 2011年第1期115-125,共11页
We relocate the spatial distribution of its aftershocks. The relocation database is obtained the devastating 12 May 2008 Wenchuan earthquake and from 89 stations deployed by the China Earthquake Administration, includ... We relocate the spatial distribution of its aftershocks. The relocation database is obtained the devastating 12 May 2008 Wenchuan earthquake and from 89 stations deployed by the China Earthquake Administration, including 54 525 seismograms from 1 376 local earthquakes over Ms3.5 between 12 May 2008 and 3 August 2008. The cross-correlation technique used in this paper has greatly improved the relocation precision by giving much more accurate P-wave differential travel-time measurements than those obtained from routinely picked phase onsets. At the same time, we pick P-wave polarity observations of the Wenchuan earthquake series (hereafter referred to as WES) from 1023 stations in China and 59 IRIS (Incorporated Research Institutions of Seismology) stations. Then, employing a newly developed program CHNYTX, we obtain 83 well-determined focal mechanism solutions (hereafter referred to as FMSs). Based on spatial distribution and FMSs of the WES, we draw following conclusions: (1) The region near the main shock exhibits a buried low-angle northwest-dipping seismic zone with the main shock at its upper end and two conjugated seismic zones dipping southeast with roughly equal dip-angle; (2) The compressional directions of all kinds of FMSs of the WES are subhorizontal, which reflects the dominant stress in this area is eompressional; (3) The principal compressional direction of the regional stress around Wenchuan is roughly perpendicular to the strike of Beichuan-Yingxiu fault, while around Qingchuan it is roughly parallel to the strike of Qingehuan fault. In intermediate part of the Longmenshan area, the principal compressional direction of the stress should be in-between; (4) The possibly existed molten materials in the lower crust of Songpan-Garze terrain have small contribution to the local stress state in Longmenshan area. The listric geometries of the Longmenshan faults most probably resulted from subhorizontal compression along NW-SE direction in history. 展开更多
关键词 SEISMOTECTONICS stress state RELOCATION focal mechanism solution WENCHUAN
在线阅读 下载PDF
Rupture process and aftershock focal mechanisms of the 2022 M6.8 Luding earthquake in Sichuan 被引量:16
18
作者 Zhigao Yang Danqing Dai +2 位作者 Yong Zhang Xuemei Zhang Jie Liu 《Earthquake Science》 2022年第6期474-484,共11页
According to the China Earthquake Networks Center,a strong earthquake of M6.8 occurred in Luding County,Ganzi Tibetan Autonomous Prefecture,Sichuan Province,China(102.08°E,29.59°N),on September 5,2022,with a... According to the China Earthquake Networks Center,a strong earthquake of M6.8 occurred in Luding County,Ganzi Tibetan Autonomous Prefecture,Sichuan Province,China(102.08°E,29.59°N),on September 5,2022,with a focal depth of 16 km.Rapid determination of the source parameters of the earthquake sequence is vital for post-earthquake rescue,disaster assessment,and scientific research.Near-field seismic observations play a key role in the fast and reliable determination of earthquake source parameters.The numerous broadband seismic stations and strong-motion stations recently deployed by the National Earthquake Intensity Rapid Report and Early Warning project have provided valuable real-time near-field observation data.Using these near-field observations and conventional mid-and far-field seismic waveform records,we obtained the focal mechanism solutions of the mainshock and M≥3.0 aftershocks through the waveform fitting method.We were further able to rapidly invert the rupture process of the mainshock.Based on the evaluation of the focal mechanism solution of the mainshock and the regional tectonic setting,we speculate that the Xianshuihe fault formed the seismogenic structure of the M6.8 strong earthquake.The aftershocks formed three spatially separated clusters with distinctly different focal mechanisms,reflecting the segmented nature of the Xianshuihe fault.As more high-frequency information has been applied in this study,the absolute location of the fault rupture is better constrained by the near-field strong-motion data.The rupture process of the mainshock correlates well with the spatial distribution of aftershocks,i.e.,aftershock activities were relatively weak in the maximum slip area,and strong aftershock activities were distributed in the peripheral regions. 展开更多
关键词 Luding earthquake rupture process focal mechanism strong motion
在线阅读 下载PDF
Comparison of ground truth location of earthquake from InSAR and from ambient seismic noise: A case study of the 1998 Zhangbei earthquake 被引量:8
19
作者 Jun Xie Xiangfang Zeng +1 位作者 Weiwen Chen Zhongwen Zhan 《Earthquake Science》 CSCD 2011年第2期239-247,共9页
Because ambient seismic noise provides estimated Green’s function (EGF) between two sites with high accuracy, Rayleigh wave propagation along the path connecting the two sites is well resolved. Therefore, earthquak... Because ambient seismic noise provides estimated Green’s function (EGF) between two sites with high accuracy, Rayleigh wave propagation along the path connecting the two sites is well resolved. Therefore, earthquakes which are close to one seismic station can be well located with calibration extracting from EGF. We test two algorithms in locating the 1998 Zhangbei earthquake, one algorithm is waveform-based, and the other is traveltime-based. We first compute EGF between station ZHB (a station about 40 km away from the epicenter) and five IC/IRIS stations. With the waveform-based approach, we calculate 1D synthetic single-force Green’s functions between ZHB and other four stations, and obtain traveltime corrections by correlating synthetic Green’s functions with EGFs in period band of 10–30 s. Then we locate the earthquake by minimizing the differential travel times between observed earthquake waveform and the 1D synthetic earthquake waveforms computed with focal mechanism provided by Global CMT after traveltime correction from EGFs. This waveform-based approach yields a location which error is about 13 km away from the location observed with InSAR. With the traveltime-based approach, we begin with measuring group velocity from EGFs as well as group arrival time on observed earthquake waveforms, and then locate the earthquake by minimizing the difference between observed group arrival time and arrival time measured on EGFs. This traveltime-based approach yields accuracy of 3 km, Therefore it is feasible to achieve GT5 (ground truth location with accuracy 5 km) with ambient seismic noises. The less accuracy of the waveform-based approach was mainly caused by uncertainty of focal mechanism. 展开更多
关键词 ambient seismic noise estimated Green’s function ground truth location Rayleigh wave
在线阅读 下载PDF
The Seismogenic Structure of the 2010 Suining Ms 5.0 Earthquake and its Geometry,Kinematics and Dynamics Analysis 被引量:6
20
作者 LU Renqi HE Dengfa +4 位作者 JOHN Suppe MA Yongsheng GUAN Shuwei SUN Yanpeng GAO Jinwei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第6期1277-1285,共9页
In January 2010, the Suining Ms5.0 earthquake occurred in central Sichuan Basin, with the epicenter in Moxi-Longnvsi structural belt and a focal depth of 10 km. Based on structural interpretations of seismic profiles ... In January 2010, the Suining Ms5.0 earthquake occurred in central Sichuan Basin, with the epicenter in Moxi-Longnvsi structural belt and a focal depth of 10 km. Based on structural interpretations of seismic profiles in this area, we recognized a regional detachment fault located at a depth of 9-10 km in the Presinian basement of the Suining area, transferring its slipping from NW to SE orientation. This detachment fault slipped from NW to SE, and underwent several shears and bends, which caused the basement to be rolled in and the overlaying strata fold deformation. It formed a fault-bend fold in the Moxi area with an approximate slip of 4 km. Correspondingly, the formation of the Moxi anticline is related to the detachment fault. With the earthquake's epicenter on the ramp of the detachment fault, there is a new point of view that the Suining earthquake was caused by re-activation of this basement detachment fault. Since the Late Jurassic period, under the influence of regional tectonic stress, the detachment fault transfered its slip from the Longmen Mountains (LMS) thrust belt to the hinterland of the Sichuan Basin, and finally to the piedmont zone of southwest Huayingshan (HYS), which indicates that HYS might be the final front area of the LMS thrust belt. 展开更多
关键词 Suining Ms5.0 earthquake Seismic interpretation Detachment fault Moxi anticline Longmen Mountains Sichuan Basin
在线阅读 下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部