Biomedical image analysis has been exploited considerably by recent technology involvements,carrying about a pattern shift towards‘automation’and‘error free diagnosis’classification methods with markedly improved ...Biomedical image analysis has been exploited considerably by recent technology involvements,carrying about a pattern shift towards‘automation’and‘error free diagnosis’classification methods with markedly improved accurate diagnosis productivity and cost effectiveness.This paper proposes an automated deep learning model to diagnose skin disease at an early stage by using Dermoscopy images.The proposed model has four convolutional layers,two maxpool layers,one fully connected layer and three dense layers.All the convolutional layers are using the kernel size of 3∗3 whereas the maxpool layer is using the kernel size of 2∗2.The dermoscopy images are taken from the HAM10000 dataset.The proposed model is compared with the three different models of ResNet that are ResNet18,ResNet50 and ResNet101.The models are simulated with 32 batch size and Adadelta optimizer.The proposed model has obtained the best accuracy value of 0.96 whereas the ResNet101 model has obtained 0.90,the ResNet50 has obtained 0.89 and the ResNet18 model has obtained value as 0.86.Therefore,features obtained from the proposed model are more capable for improving the classification performance of multiple skin disease classes.This model can be used for early diagnosis of skin disease and can also act as a second opinion tool for dermatologists.展开更多
CognitiveRadio(CR)has been developed as an enabling technology that allows the unused or underused spectrum to be used dynamically to increase spectral efficiency.To improve the overall performance of the CR systemit ...CognitiveRadio(CR)has been developed as an enabling technology that allows the unused or underused spectrum to be used dynamically to increase spectral efficiency.To improve the overall performance of the CR systemit is extremely important to adapt or reconfigure the systemparameters.The Decision Engine is a major module in the CR-based system that not only includes radio monitoring and cognition functions but also responsible for parameter adaptation.As meta-heuristic algorithms offer numerous advantages compared to traditional mathematical approaches,the performance of these algorithms is investigated in order to design an efficient CR system that is able to adapt the transmitting parameters to effectively reduce power consumption,bit error rate and adjacent interference of the channel,while maximized secondary user throughput.Self-Learning Salp Swarm Algorithm(SLSSA)is a recent meta-heuristic algorithm that is the enhanced version of SSA inspired by the swarming behavior of salps.In this work,the parametric adaption of CR system is performed by SLSSA and the simulation results show that SLSSA has high accuracy,stability and outperforms other competitive algorithms formaximizing the throughput of secondary users.The results obtained with SLSSA are also shown to be extremely satisfactory and need fewer iterations to converge compared to the competitive methods.展开更多
Like the Covid-19 pandemic,smallpox virus infection broke out in the last century,wherein 500 million deaths were reported along with enormous economic loss.But unlike smallpox,the Covid-19 recorded a low exponential ...Like the Covid-19 pandemic,smallpox virus infection broke out in the last century,wherein 500 million deaths were reported along with enormous economic loss.But unlike smallpox,the Covid-19 recorded a low exponential infection rate and mortality rate due to advancement inmedical aid and diagnostics.Data analytics,machine learning,and automation techniques can help in early diagnostics and supporting treatments of many reported patients.This paper proposes a robust and efficient methodology for the early detection of COVID-19 from Chest X-Ray scans utilizing enhanced deep learning techniques.Our study suggests that using the Prediction and Deconvolutional Modules in combination with the SSD architecture can improve the performance of the model trained at this task.We used a publicly open CXR image dataset and implemented the detectionmodelwith task-specific pre-processing and near 80:20 split.This achieved a competitive specificity of 0.9474 and a sensibility/accuracy of 0.9597,which shall help better decision-making for various aspects of identification and treat the infection.展开更多
Machine Learning has evolved with a variety of algorithms to enable state-of-the-art computer vision applications.In particular the need for automating the process of real-time food item identification,there is a huge...Machine Learning has evolved with a variety of algorithms to enable state-of-the-art computer vision applications.In particular the need for automating the process of real-time food item identification,there is a huge surge of research so as to make smarter refrigerators.According to a survey by the Food and Agriculture Organization of the United Nations(FAO),it has been found that 1.3 billion tons of food is wasted by consumers around the world due to either food spoilage or expiry and a large amount of food is wasted from homes and restaurants itself.Smart refrigerators have been very successful in playing a pivotal role in mitigating this problem of food wastage.But a major issue is the high cost of available smart refrigerators and the lack of accurate design algorithms which can help achieve computer vision in any ordinary refrigerator.To address these issues,this work proposes an automated identification algorithm for computer vision in smart refrigerators using InceptionV3 and MobileNet Convolutional Neural Network(CNN)architectures.The designed module and algorithm have been elaborated in detail and are considerably evaluated for its accuracy using test images on standard fruits and vegetable datasets.A total of eight test cases are considered with accuracy and training time as the performance metric.In the end,real-time testing results are also presented which validates the system’s performance.展开更多
Location information plays an important role in most of the applications in Wireless Sensor Network(WSN).Recently,many localization techniques have been proposed,while most of these deals with two Dimensional applicat...Location information plays an important role in most of the applications in Wireless Sensor Network(WSN).Recently,many localization techniques have been proposed,while most of these deals with two Dimensional applications.Whereas,in Three Dimensional applications the task is complex and there are large variations in the altitude levels.In these 3D environments,the sensors are placed in mountains for tracking and deployed in air for monitoring pollution level.For such applications,2D localization models are not reliable.Due to this,the design of 3D localization systems in WSNs faces new challenges.In this paper,in order to find unknown nodes in Three-Dimensional environment,only single anchor node is used.In the simulation-based environment,the nodes with unknown locations are moving at middle&lower layers whereas the top layer is equipped with single anchor node.A novel soft computing technique namely Adaptive Plant Propagation Algorithm(APPA)is introduced to obtain the optimized locations of these mobile nodes.Thesemobile target nodes are heterogeneous and deployed in an anisotropic environment having an Irregularity(Degree of Irregularity(DOI))value set to 0.01.The simulation results present that proposed APPAalgorithm outperforms as tested among other meta-heuristic optimization techniques in terms of localization error,computational time,and the located sensor nodes.展开更多
The high-efficiency video coder(HEVC)is one of the most advanced techniques used in growing real-time multimedia applications today.However,they require large bandwidth for transmission through bandwidth,and bandwidth...The high-efficiency video coder(HEVC)is one of the most advanced techniques used in growing real-time multimedia applications today.However,they require large bandwidth for transmission through bandwidth,and bandwidth varies with different video sequences/formats.This paper proposes an adaptive information-based variable quantization matrix(AIVQM)developed for different video formats having variable energy levels.The quantization method is adapted based on video sequence using statistical analysis,improving bit budget,quality and complexity reduction.Further,to have precise control over bit rate and quality,a multi-constraint prune algorithm is proposed in the second stage of the AI-VQM technique for pre-calculating K numbers of paths.The same should be handy to selfadapt and choose one of the K-path automatically in dynamically changing bandwidth availability as per requirement after extensive testing of the proposed algorithm in the multi-constraint environment for multiple paths and evaluating the performance based on peak signal to noise ratio(PSNR),bit-budget and time complexity for different videos a noticeable improvement in rate-distortion(RD)performance is achieved.Using the proposed AIVQM technique,more feasible and efficient video sequences are achieved with less loss in PSNR than the variable quantization method(VQM)algorithm with approximately a rise of 10%–20%based on different video sequences/formats.展开更多
In recent times,the images and videos have emerged as one of the most important information source depicting the real time scenarios.Digital images nowadays serve as input for many applications and replacing the manua...In recent times,the images and videos have emerged as one of the most important information source depicting the real time scenarios.Digital images nowadays serve as input for many applications and replacing the manual methods due to their capabilities of 3D scene representation in 2D plane.The capabilities of digital images along with utilization of machine learning methodologies are showing promising accuracies in many applications of prediction and pattern recognition.One of the application fields pertains to detection of diseases occurring in the plants,which are destroying the widespread fields.Traditionally the disease detection process was done by a domain expert using manual examination and laboratory tests.This is a tedious and time consuming process and does not suffice the accuracy levels.This creates a room for the research in developing automation based methods where the images captured through sensors and cameras will be used for detection of disease and control its spreading.The digital images captured from the field’s forms the dataset which trains the machine learning models to predict the nature of the disease.The accuracy of these models is greatly affected by the amount of noise and ailments present in the input images,appropriate segmentation methodology,feature vector development and the choice of machine learning algorithm.To ensure the high rated performance of the designed system the research is moving in a direction to fine tune each and every stage separately considering their dependencies on subsequent stages.Therefore the most optimum solution can be obtained by considering the image processing methodologies for improving the quality of image and then applying statistical methods for feature extraction and selection.The training vector thus developed is capable of presenting the relationship between the feature values and the target class.In this article,a highly accurate system model for detecting the diseases occurring in citrus fruits using a hybrid feature development approach is proposed.The overall improvement in terms of accuracy is measured and depicted.展开更多
基金This work was supported by Taif university Researchers Supporting Project Number(TURPS-2020/114),Taif University,Taif,Saudi Arabia.
文摘Biomedical image analysis has been exploited considerably by recent technology involvements,carrying about a pattern shift towards‘automation’and‘error free diagnosis’classification methods with markedly improved accurate diagnosis productivity and cost effectiveness.This paper proposes an automated deep learning model to diagnose skin disease at an early stage by using Dermoscopy images.The proposed model has four convolutional layers,two maxpool layers,one fully connected layer and three dense layers.All the convolutional layers are using the kernel size of 3∗3 whereas the maxpool layer is using the kernel size of 2∗2.The dermoscopy images are taken from the HAM10000 dataset.The proposed model is compared with the three different models of ResNet that are ResNet18,ResNet50 and ResNet101.The models are simulated with 32 batch size and Adadelta optimizer.The proposed model has obtained the best accuracy value of 0.96 whereas the ResNet101 model has obtained 0.90,the ResNet50 has obtained 0.89 and the ResNet18 model has obtained value as 0.86.Therefore,features obtained from the proposed model are more capable for improving the classification performance of multiple skin disease classes.This model can be used for early diagnosis of skin disease and can also act as a second opinion tool for dermatologists.
基金The authors would like to thank for the support from Taif University Researchers Supporting Project Number(TURSP-2020/239),Taif University,Taif,Saudi Arabia。
文摘CognitiveRadio(CR)has been developed as an enabling technology that allows the unused or underused spectrum to be used dynamically to increase spectral efficiency.To improve the overall performance of the CR systemit is extremely important to adapt or reconfigure the systemparameters.The Decision Engine is a major module in the CR-based system that not only includes radio monitoring and cognition functions but also responsible for parameter adaptation.As meta-heuristic algorithms offer numerous advantages compared to traditional mathematical approaches,the performance of these algorithms is investigated in order to design an efficient CR system that is able to adapt the transmitting parameters to effectively reduce power consumption,bit error rate and adjacent interference of the channel,while maximized secondary user throughput.Self-Learning Salp Swarm Algorithm(SLSSA)is a recent meta-heuristic algorithm that is the enhanced version of SSA inspired by the swarming behavior of salps.In this work,the parametric adaption of CR system is performed by SLSSA and the simulation results show that SLSSA has high accuracy,stability and outperforms other competitive algorithms formaximizing the throughput of secondary users.The results obtained with SLSSA are also shown to be extremely satisfactory and need fewer iterations to converge compared to the competitive methods.
文摘Like the Covid-19 pandemic,smallpox virus infection broke out in the last century,wherein 500 million deaths were reported along with enormous economic loss.But unlike smallpox,the Covid-19 recorded a low exponential infection rate and mortality rate due to advancement inmedical aid and diagnostics.Data analytics,machine learning,and automation techniques can help in early diagnostics and supporting treatments of many reported patients.This paper proposes a robust and efficient methodology for the early detection of COVID-19 from Chest X-Ray scans utilizing enhanced deep learning techniques.Our study suggests that using the Prediction and Deconvolutional Modules in combination with the SSD architecture can improve the performance of the model trained at this task.We used a publicly open CXR image dataset and implemented the detectionmodelwith task-specific pre-processing and near 80:20 split.This achieved a competitive specificity of 0.9474 and a sensibility/accuracy of 0.9597,which shall help better decision-making for various aspects of identification and treat the infection.
基金This work was supported by Taif University Researchers Supporting Project(TURSP)under number(TURSP-2020/10),Taif University,Taif,Saudi Arabia.
文摘Machine Learning has evolved with a variety of algorithms to enable state-of-the-art computer vision applications.In particular the need for automating the process of real-time food item identification,there is a huge surge of research so as to make smarter refrigerators.According to a survey by the Food and Agriculture Organization of the United Nations(FAO),it has been found that 1.3 billion tons of food is wasted by consumers around the world due to either food spoilage or expiry and a large amount of food is wasted from homes and restaurants itself.Smart refrigerators have been very successful in playing a pivotal role in mitigating this problem of food wastage.But a major issue is the high cost of available smart refrigerators and the lack of accurate design algorithms which can help achieve computer vision in any ordinary refrigerator.To address these issues,this work proposes an automated identification algorithm for computer vision in smart refrigerators using InceptionV3 and MobileNet Convolutional Neural Network(CNN)architectures.The designed module and algorithm have been elaborated in detail and are considerably evaluated for its accuracy using test images on standard fruits and vegetable datasets.A total of eight test cases are considered with accuracy and training time as the performance metric.In the end,real-time testing results are also presented which validates the system’s performance.
基金This research was supported by X-mind Corps program of National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(No.2019H1D8A1105622)and the Soonchunhyang University Research Fund.
文摘Location information plays an important role in most of the applications in Wireless Sensor Network(WSN).Recently,many localization techniques have been proposed,while most of these deals with two Dimensional applications.Whereas,in Three Dimensional applications the task is complex and there are large variations in the altitude levels.In these 3D environments,the sensors are placed in mountains for tracking and deployed in air for monitoring pollution level.For such applications,2D localization models are not reliable.Due to this,the design of 3D localization systems in WSNs faces new challenges.In this paper,in order to find unknown nodes in Three-Dimensional environment,only single anchor node is used.In the simulation-based environment,the nodes with unknown locations are moving at middle&lower layers whereas the top layer is equipped with single anchor node.A novel soft computing technique namely Adaptive Plant Propagation Algorithm(APPA)is introduced to obtain the optimized locations of these mobile nodes.Thesemobile target nodes are heterogeneous and deployed in an anisotropic environment having an Irregularity(Degree of Irregularity(DOI))value set to 0.01.The simulation results present that proposed APPAalgorithm outperforms as tested among other meta-heuristic optimization techniques in terms of localization error,computational time,and the located sensor nodes.
文摘The high-efficiency video coder(HEVC)is one of the most advanced techniques used in growing real-time multimedia applications today.However,they require large bandwidth for transmission through bandwidth,and bandwidth varies with different video sequences/formats.This paper proposes an adaptive information-based variable quantization matrix(AIVQM)developed for different video formats having variable energy levels.The quantization method is adapted based on video sequence using statistical analysis,improving bit budget,quality and complexity reduction.Further,to have precise control over bit rate and quality,a multi-constraint prune algorithm is proposed in the second stage of the AI-VQM technique for pre-calculating K numbers of paths.The same should be handy to selfadapt and choose one of the K-path automatically in dynamically changing bandwidth availability as per requirement after extensive testing of the proposed algorithm in the multi-constraint environment for multiple paths and evaluating the performance based on peak signal to noise ratio(PSNR),bit-budget and time complexity for different videos a noticeable improvement in rate-distortion(RD)performance is achieved.Using the proposed AIVQM technique,more feasible and efficient video sequences are achieved with less loss in PSNR than the variable quantization method(VQM)algorithm with approximately a rise of 10%–20%based on different video sequences/formats.
基金This work was supported by Taif University Researchers Supporting Project(TURSP)under number(TURSP-2020/73)Taif University,Taif,Saudi Arabia。
文摘In recent times,the images and videos have emerged as one of the most important information source depicting the real time scenarios.Digital images nowadays serve as input for many applications and replacing the manual methods due to their capabilities of 3D scene representation in 2D plane.The capabilities of digital images along with utilization of machine learning methodologies are showing promising accuracies in many applications of prediction and pattern recognition.One of the application fields pertains to detection of diseases occurring in the plants,which are destroying the widespread fields.Traditionally the disease detection process was done by a domain expert using manual examination and laboratory tests.This is a tedious and time consuming process and does not suffice the accuracy levels.This creates a room for the research in developing automation based methods where the images captured through sensors and cameras will be used for detection of disease and control its spreading.The digital images captured from the field’s forms the dataset which trains the machine learning models to predict the nature of the disease.The accuracy of these models is greatly affected by the amount of noise and ailments present in the input images,appropriate segmentation methodology,feature vector development and the choice of machine learning algorithm.To ensure the high rated performance of the designed system the research is moving in a direction to fine tune each and every stage separately considering their dependencies on subsequent stages.Therefore the most optimum solution can be obtained by considering the image processing methodologies for improving the quality of image and then applying statistical methods for feature extraction and selection.The training vector thus developed is capable of presenting the relationship between the feature values and the target class.In this article,a highly accurate system model for detecting the diseases occurring in citrus fruits using a hybrid feature development approach is proposed.The overall improvement in terms of accuracy is measured and depicted.