期刊文献+
共找到1,622篇文章
< 1 2 82 >
每页显示 20 50 100
The Correlation between the Power Quality Indicators and Entropy Production Characteristics of Wind Power+Energy Storage Systems 被引量:1
1
作者 Caifeng Wen Boxin Zhang +3 位作者 Yuanjun Dai Wenxin Wang Wanbing Xie Qian Du 《Energy Engineering》 EI 2024年第10期2961-2979,共19页
Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e... Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production. 展开更多
关键词 Wind power system entropy production system losses power quality indexes battery energy storage
在线阅读 下载PDF
Ionization Engineering of Hydrogels Enables Highly Efficient Salt‑Impeded Solar Evaporation and Night‑Time Electricity Harvesting 被引量:4
2
作者 Nan He Haonan Wang +3 位作者 Haotian Zhang Bo Jiang Dawei Tang Lin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期131-146,共16页
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ... Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity. 展开更多
关键词 Solar evaporation Hydrogel evaporators Salt impeding Ionization engineering Cyclic vapor-electricity generation
在线阅读 下载PDF
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System
3
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
Flow and heat transfer characteristics of regenerative cooling parallel channel
4
作者 JU Yinchao LIU Xiaoyong +1 位作者 XU Guoqiang DONG Bensi 《推进技术》 北大核心 2025年第1期163-171,共9页
Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass rat... Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design. 展开更多
关键词 Regenerative cooling Heat transfer Flow resistance ENGINE Parallel channel
在线阅读 下载PDF
Molecular Dynamics Simulation of Bubble Arrangement and Cavitation Number Influence on Collapse Characteristics
5
作者 Shuaijie Jiang Zechen Zhou +3 位作者 XiuliWang WeiXu WenzhuoGuo Qingjiang Xiang 《Fluid Dynamics & Materials Processing》 2025年第3期471-491,共21页
In nature,cavitation bubbles typically appear in clusters,engaging in interactions that create a variety of dynamicmotion patterns.To better understand the behavior ofmultiple bubble collapses and the mechanisms of in... In nature,cavitation bubbles typically appear in clusters,engaging in interactions that create a variety of dynamicmotion patterns.To better understand the behavior ofmultiple bubble collapses and the mechanisms of interbubble interaction,this study employs molecular dynamics simulation combined with a coarse-grained force field.By focusing on collapsemorphology,local density,and pressure,it elucidates how the number and arrangement of bubbles influence the collapse process.The mechanisms behind inter-bubble interactions are also considered.The findings indicate that the collapse speed of unbounded bubbles located in lateral regions is greater than that of the bubbles in the center.Moreover,it is shown that asymmetrical bubble distributions lead to a shorter collapse time overall. 展开更多
关键词 Molecular dynamics simulation coarse-grained force field bubble arrangement multiple bubbles bubble collapse
在线阅读 下载PDF
The Implementation Path and Effect Evaluation of Curriculum Ideological and Political Education in Professional Courses in Higher Education Institutions
6
作者 Junying Tang 《Journal of Contemporary Educational Research》 2025年第2期32-38,共7页
Under the background of the new era,strengthening curriculum ideological and political construction has become one of the important tasks for colleges and universities to achieve curriculum teaching reform in recent y... Under the background of the new era,strengthening curriculum ideological and political construction has become one of the important tasks for colleges and universities to achieve curriculum teaching reform in recent years.How to subtly and effectively infiltrate the ideological and political ideas of the curriculum in the teaching of specialized courses,and achieve the effect of“salt into taste”is the biggest difficulty in the current construction of curriculum ideological and political education in colleges and universities.Based on this,this paper first analyzes the characteristics of carrying out ideological and political teaching in professional courses in colleges and universities,then expounds on the existing problems and implementation paths of current ideological and political teaching in professional courses in colleges and universities,and finally analyzes its teaching practice results,aiming to further promote the construction and development of ideological and political teaching in colleges and universities and provide some references for peers. 展开更多
关键词 Curriculum ideological and political teaching Colleges and universities Specialized course teaching Implementation path
在线阅读 下载PDF
High-temperature fatigue cracking mechanism and microstructure evolution of aero-engine K4169 superalloy in service process
7
作者 Song-jun WANG Jian-jun HE +6 位作者 Zhi-hui GONG Wei-ping LI Jun-gang YANG Ya-jun SHAO Yu-hui CAI Yue-xin DU Cheng-wei YANG 《Transactions of Nonferrous Metals Society of China》 2025年第2期499-510,共12页
By using fatigue crack propagation testing and microstructural characterization,the crack fracture and propagation mechanisms of K4169 superalloy under various loads were investigated.The results demonstrate that the ... By using fatigue crack propagation testing and microstructural characterization,the crack fracture and propagation mechanisms of K4169 superalloy under various loads were investigated.The results demonstrate that the grain sizes of K4169 superalloy significantly increase,and the precipitation of the needle-likeδphase and the Laves phase is observed.Voids and microcracks form at location of Laves phase enrichment,creating conditions for crack propagation.By the a−N(a is the crack length,and N is the number of cycles)relationship curve,the change in the fatigue crack growth rate with the increasing number of cycles progresses through three separate stages.The fracture process of K4169 superalloy under low-stress cyclic loading(3 kN)exhibits the ductile fracture.Subsequently,the fracture process starts to change from the ductile fracture to the brittle fracture as the stress increases to 4.5 kN.In the microstructures of fractures in both stress states,intergranular propagation is the mechanism responsible for crack propagation.Moreover,the Laves phase exists near the fracture crack,which is in line with the post-service structural phenomenon. 展开更多
关键词 K4169 superalloy high-temperature fatigue MICROSTRUCTURE crack propagation AERO-ENGINE
在线阅读 下载PDF
A review on global spatial distribution,sources and toxicity of perfluoroalkyl acid and prospect in the cryosphere
8
作者 LI Bowen Du Wentao +5 位作者 KANG Shichang CHEN Jizu JIANG Youyan YIN Lichen LU Changsheng LIU Hongyi 《Journal of Mountain Science》 2025年第1期167-183,共17页
Perfluoroalkyl acid analogs(PFAAs)are a class of chemically stable environmentally persistent organic pollutants(POPs)that are difficult to degrade and have a strong capacity to accumulate in the human body.PFAAs have... Perfluoroalkyl acid analogs(PFAAs)are a class of chemically stable environmentally persistent organic pollutants(POPs)that are difficult to degrade and have a strong capacity to accumulate in the human body.PFAAs have been found to be biotoxic to humans and have been detected in various environmental media,especially in the cryosphere at trace concentrations.The cryosphere,sensitively responds to climate change,plays a crucial role in the global water,carbon and energy cycles.However,researches on cryosphere PFAAs especially in Tibetan Plateau(TP)is limited.Therefore,we summarize the physicochemical properties,physiological toxicity,spatiotemporal distribution,sources,diffusion and migration pathways,as well as analysis and removal methods of PFAAs in the cryosphere regions.The results show that PFAAs pollutants are mainly produced and distributed in the more economically developed countries in Europe and the United States,as well as in East Asia,and PFAAs can be transported by atmospheric circulation and water cycle to remote regions including cryosphere regions.The current detection methods for PFAAs in cryosphere need to be further refined for increased accuracy and convenience.There is also a need to develop more effective removal methods that will reduce the environmental and human threats posed by these PFAAs.Finally,we propose key scientific questions for future research in cryosphere including PFAAs redistribution influenced by cryosphere changes,human activities,and the interaction of other spheres. 展开更多
关键词 Perfluoroalkyl acid CRYOSPHERE Physiological toxicity Analytical method Removal method
在线阅读 下载PDF
Mechanical response and dilatancy characteristics of deep marble under different stress paths:A sight from energy dissipation
9
作者 LIU Xiao-hui HAO Qi-jun +2 位作者 ZHENG Yu ZHANG Zhao-peng XUE Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2070-2086,共17页
Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses ... Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses on Jinping marble obtained from the Jinping Underground Laboratory in China at a depth of 2400 m.Various uniaxial and triaxial tests at different strain rates,along with constant confining pressure tests and reduced confining pressure tests under different confining pressures were conducted to analyze the mechanical response and dilatancy characteristics of the marble under four stress paths.Subsequently,a new empirical dilatancy coefficient is proposed based on the energy dissipation method.The results show that brittle failure characteristics of marble under uniaxial compression are more obvious with the strain rate increasing,and plastic failure characteristics of marble under triaxial compression are gradually strengthened.Furthermore,compared to the constant confining pressure,the volume expansion is relatively lower under unloading condition.The energy dissipation is closely linked to the process of dilatancy,with a rapid increase of dissipated energy coinciding with the beginning of dilatancy.A new empirical dilatancy coefficient is defined according to the change trend of energy dissipation rate curve,of which change trend is consistent with the actual dilatancy response in marble under different stress paths.The existing empirical and theoretical dilatancy models are analyzed,which shows that the empirical dilatancy coefficient based on the energy background is more universal. 展开更多
关键词 deep marble stress paths DILATANCY energy dissipation empirical dilatancy coefficient
在线阅读 下载PDF
Short-Term Prediction of Photovoltaic Power Based on DBSCAN-SVM Data Cleaning and PSO-LSTM Model
10
作者 Yujin Liu Zhenkai Zhang +3 位作者 Li Ma Yan Jia Weihua Yin Zhifeng Liu 《Energy Engineering》 EI 2024年第10期3019-3035,共17页
Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy ... Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy of PV power prediction further,this paper proposes a data cleaning method combining density clustering and support vector machine.It constructs a short-termPVpower predictionmodel based on particle swarmoptimization(PSO)optimized Long Short-Term Memory(LSTM)network.Firstly,the input features are determined using Pearson’s correlation coefficient.The feature information is clustered using density-based spatial clustering of applications withnoise(DBSCAN),and then,the data in each cluster is cleanedusing support vectormachines(SVM).Secondly,the PSO is used to optimize the hyperparameters of the LSTM network to obtain the optimal network structure.Finally,different power prediction models are established,and the PV power generation prediction results are obtained.The results show that the data methods used are effective and that the PSO-LSTM power prediction model based on DBSCAN-SVM data cleaning outperforms existing typical methods,especially under non-sunny days,and that the model effectively improves the accuracy of short-term PV power prediction. 展开更多
关键词 Photovoltaic power prediction LSTM network DBSCAN-SVM PSO deep learning
在线阅读 下载PDF
Insight of effects of air quality and sustainable aviation fuel blend on energy saving and emission reduction in airport
11
作者 Ziyu Liu Sha Yu Xiaoyi Yang 《Bioresources and Bioprocessing》 2024年第1期1115-1129,共15页
Air quality in airport attracts a widespread attention due to the emission of GHGs and pollutants related with aircraft flight.Sustainable aviation fuel(SAF)has confirmed PM2.5 reduction due to free of aromatics and s... Air quality in airport attracts a widespread attention due to the emission of GHGs and pollutants related with aircraft flight.Sustainable aviation fuel(SAF)has confirmed PM2.5 reduction due to free of aromatics and sulphur,and thus air quality improvement in airport is prospected by SAF blend.Two types of SAF were assessed the potential of energy saving and emission reduction by ZF850 jet engine.FT fuel is characterized with only paraffins without aromatics and cycloparaffins while HCHJ fuels is characterized with no aromatics.The descend of air quality and SAF blend were both investigated the effect on the engine performance and emission characteristic.The critical parameters were extracted from fuel compositions and air pollutants.Ambient air with a higher PM2.5 could lead to the rise of engine emission especially in UHC and PM2.5 despite at the low thrust setting and high thrust setting,and even couple with 3.2%rise in energy consumption and 1%reduction in combustion efficiency.CO,NO and NO2 in ambient air show less influence on engine performance and emission characteristic than PM2.5.Both types of SAF blend were observed significant reductions in PM2.5 and UHC.PM2.5 reduction obtained 37.9%-99.8%by FT blend and 0.64%-93.9%by HCHJ blend through the whole trust settings.There are almost 6.67%positive benefit in TSFC through the whole thrust setting by 7%FT blend.The effects of air quality and SAF blend on engine emission present significant changes on PM and UHC but the slight change on CO and NOx.By SAF blend,the energy saving and pollutant reduction obtained could be both benefit for air quality improvement in airport and further reduce engine emission as the feedback of less pollutants in ambient air. 展开更多
关键词 Air quality PM UHC AIRPORT SAFs Engine emission
在线阅读 下载PDF
Micro segment analysis of supercritical methane thermal-hydraulic performance and pseudo-boiling in a PCHE straight channel 被引量:2
12
作者 Qian Li Zi-Jie Lin +3 位作者 Liu Yang Yue Wang Yue Li Wei-Hua Cai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1275-1289,共15页
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the... The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE. 展开更多
关键词 Printed circuit heat exchanger Vaporization Supercritical methane Pseudo-boiling Micro segment analysis
在线阅读 下载PDF
Enhanced properties of stone coal-based composite phase change materials for thermal energy storage 被引量:2
13
作者 Baoshan Xie Huan Ma +1 位作者 Chuanchang Li Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期206-215,共10页
Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential... Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals. 展开更多
关键词 thermal energy storage phase change material stone coal vanadium extraction secondary utilization
在线阅读 下载PDF
Numerical and experimental investigation into the evolution of the shock wave when a muzzle jet impacts a constrained moving body 被引量:1
14
作者 Zijie Li Hao Wang +1 位作者 Changshun Chen Kun Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期317-326,共10页
The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of th... The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of the traditional muzzle jet.Specifically,it changes from freely developing to doing so in a constrained manner,where this results in an asymmetric direction of flow as well as spatio-temporal coupling-induced interference between various shock waves and the formation of vortices.In this background,the authors of this article formulate and consider the development and characteristics of evolution of the muzzle jet as it impacts a constrained moving body.We designed simulations to test the gun-track launch system,and established a numerical model based on the dynamic grid method to explore the development and characteristics of propagation of disturbances when the muzzle jet impacted a constrained moving body.We also considered models without a constrained track for the sake of comparison.The results showed that the muzzle jet assumed a circumferential asymmetric shape,and tended to develop in the area above the muzzle.Because the test platform was close to the ground,the muzzle jet was subjected to reflections from it that enhanced the development and evolution of various forms of shock waves and vortices in the muzzle jet to exacerbate its rate of distortion and asymmetric characteristics.This in turn led to significant differences in the changes in pressure at symmetric points that would otherwise have been identical.The results of a comparative analysis showed that the constrained track could hinder the influence of reflections from the ground on the muzzle jet to some extent,and could reduce the velocity of the shock waves inducing the motion of the muzzle as well as the Mach number of the moving body.The work here provides a theoretical basis and the requisite technical support for applications of the gun-track launch system.It also sheds light on the technical bottlenecks that need to be considered to recover high-value warheads. 展开更多
关键词 Shock wave/vortex interference Muzzle jet Constrained boundary Dynamic grid
在线阅读 下载PDF
Rapid and stable calcium-looping solar thermochemical energy storage via co-doping binary sulfate and Al–Mn–Fe oxides 被引量:1
15
作者 Changjian Yuan Xianglei Liu +8 位作者 Xinrui Wang Chao Song Hangbin Zheng Cheng Tian Ke Gao Nan Sun Zhixing Jiang Yimin Xuan Yulong Ding 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1290-1305,共16页
Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffe... Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffer from slow reaction kinetics,poor stability,and low solar absorptance.Here,we successfully realized high power density and highly stable solar thermochemical energy storage/release by synergistically accelerating energy storage/release via binary sulfate and promoting cycle stability,mechanical strength,and solar absorptance via Al–Mn–Fe oxides.The energy storage density of proposed CaCO_(3)pellets is still as high as 1455 kJ kg^(-1)with only a slight decay rate of 4.91%over 100 cycles,which is higher than that of state-of-the-art pellets in the literature,in stark contrast to 69.9%of pure CaCO_(3)pellets over 35 cycles.Compared with pure CaCO_(3),the energy storage power density or decomposition rate is improved by 120%due to lower activation energy and promotion of Ca^(2+)diffusion by binary sulfate.The energy release or carbonation rate rises by 10%because of high O^(2-)transport ability of molten binary sulfate.Benefiting from fast energy storage/release rate and high solar absorptance,thermochemical energy storage efficiency is enhanced by more than 50%under direct solar irradiation.This work paves the way for application of direct solar thermochemical energy storage techniques via achieving fast energy storage/release rate,high energy density,good cyclic stability,and high solar absorptance simultaneously. 展开更多
关键词 Calcium looping(CaL) Solar thermochemical Energy storage Binary sulfate Fast reaction kinetics
在线阅读 下载PDF
Importance of oxygen-containing functionalities and pore structures of biochar in catalyzing pyrolysis of homologous poplar 被引量:1
16
作者 Li Qiu Chao Li +6 位作者 Shu Zhang Shuang Wang Bin Li Zhenhua Cui Yonggui Tang Obid Tursunov Xun Hu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期200-211,共12页
Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar... Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar is an inherent catalyst for pyrolysis.In this study,in order to investigate the influence of functionalities and pore structures of biochar on its capability for catalyzing the conversion of homologous volatiles in bio-oil,three char catalysts(600C,800C,and 800AC)produced via pyrolysis of poplar wood at 600 or 800℃or activated at 800℃,were used for catalyzing pyrolysis of homologous poplar wood at 600℃,respectively.The results indicated that the 600C catalyst was more active than 800C and 800AC for catalyzing cracking of volatiles to form more gas(yield increase by 40.2%)and aromatization of volatiles to form more light or heavy phenolics,due to its abundant oxygen-containing functionalities acting as active sites.The developed pores of the 800AC showed no such catalytic effect but could trap some volatiles and allow their further conversion via sufficient aromatization.Nevertheless,the interaction with the volatiles consumed oxygen on 600C(decrease by 50%),enhancing the aromatic degree and increasing thermal stability.The dominance of deposition of carbonaceous material of a very aromatic nature over 800C and 800AC resulted in net weight gain and blocked micropores but formed additional macropores.The in situ diffuse reflectance infrared Fourier transform spectroscopy characterization of the catalytic pyrolysis indicated superior activity of 600C for removal of -OH,while conversion of the intermediates bearing C=O was enhanced over all the char catalysts. 展开更多
关键词 Poplar wood Catalytic pyrolysis Char catalyst Volatile-char interaction BIO-OIL
在线阅读 下载PDF
Integration of Low-level Waste Heat Recovery and Liquefied Nature Gas Cold Energy Utilization 被引量:16
17
作者 白菲菲 张早校 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第1期95-99,共5页
Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power gen... Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively. 展开更多
关键词 recovery of low-level waste heat LNG cold energy utilization power generation cascade utilization
在线阅读 下载PDF
Stress relief and crystal face transition process contribute to the stability of zinc anodes
18
作者 Yuqian Li Chunhui Peng +2 位作者 Xiaotong Gao Huanrong Liu Wenju Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期593-603,共11页
Zn electrodes are suffering the dendrite growth owing to the enrichment of local space charge, distinct exposed face and residual stress. In this work, we investigated the crystal face properties and stress state of Z... Zn electrodes are suffering the dendrite growth owing to the enrichment of local space charge, distinct exposed face and residual stress. In this work, we investigated the crystal face properties and stress state of Zn foil through static energy calculations, dynamic crystal growth analysis and finite element simulation of stress states. Then thermal driven is deployed to modify the exposure face and residual stress of Zn foil, aiming for a dendrite-free electrode. The calculation of surface energies and simulation of crystal growth models for different crystal faces indicate that the(0 0 1) face can maintain stability during deposition. Inspired by this mechanism, the(1 0 1) exposed commercial Zn foil is modified by thermal processing. Firstly, the exposure level of the(0 0 1) face increases, though only the peak corresponding to the(0 0 2) crystal face is observed, due to the extinction effect of the densely packed plane(0 0 1) face.Further, the surface morphology becomes smooth and the stress is released with the progresses time.These stress relief and crystal face transition process strengthen the uniformity of ion distribution, and increase the interface stability during the crystal growth, which reduce the defect sites in the deposition.As a result, the Zn electrode exhibits tiny voltage hysteresis and outstanding cycle stability, which reveals improved electrochemical performance. Additionally, Li and Na can also be improved in exposed crystal faces and release strain energy through similar methods to enhance cycling stability. 展开更多
关键词 Zn metal anode Dendrite free Exposure of crystal-face Stress relief Stable deposition
在线阅读 下载PDF
Model for seawater fouling and effects of temperature,flow velocity and surface free energy on seawater fouling 被引量:3
19
作者 Dazhang Yang Jianhua Liu +1 位作者 Xiaoxue E Linlin Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第5期658-664,共7页
A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers.The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the K... A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers.The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the Kern–Seaton model.The present model parameters include the integrated kinetic rate of deposition(k d)and the integrated kinetic rate of removal(k r),which have clear physical signi ficance.A seawater-fouling monitoring device was established to validate the model.The experimental data were well fitted to the model,and the parameters were obtained in different conditions.SEM and EDX analyses were performed after the experiments,and the results show that the main components of seawater fouling are magnesium hydroxide and aluminum hydroxide.The effects of surface temperature,flow velocity and surface free energy were assessed by the model and the experimental data.The results indicate that the seawater fouling becomes aggravated as the surface temperature increased in a certain range,and the seawater fouling resistance reduced as the flow velocity of seawater increased.Furthermore,the effect of the surface free energy of metals was analyzed,showing that the lower surface free energy mitigates the seawater fouling accumulation. 展开更多
关键词 FOULING Seawater MODEL Surface temperature Flow velocity Surface free energy
在线阅读 下载PDF
Geochemical modeling to aid experimental design for multiple isotope tracer studies of coupled dissolution and precipitation reaction kinetics
20
作者 Mingkun Chen Peng Lu +1 位作者 Yongchen Song Chen Zhu 《Acta Geochimica》 EI CAS CSCD 2024年第1期1-15,共15页
It is a challenge to make thorough but efficient experimental designs for the coupled mineral dissolution and precipitation studies in a multi-mineral system, because it is difficult to speculate the best experimental... It is a challenge to make thorough but efficient experimental designs for the coupled mineral dissolution and precipitation studies in a multi-mineral system, because it is difficult to speculate the best experimental duration, optimal sampling schedule, effects of different experimental conditions, and how to maximize the experimental outputs prior to the actual experiments. Geochemical modeling is an efficient and effective tool to assist the experimental design by virtually running all scenarios of interest for the studied system and predicting the experimental outcomes. Here we demonstrated an example of geochemical modeling assisted experimental design of coupled labradorite dissolution and calcite and clayey mineral precipitation using multiple isotope tracers. In this study, labradorite(plagioclase) was chosen as the reactant because it is both a major component and one of the most reactive minerals in basalt. Following our isotope doping studies of single minerals in the last ten years, initial solutions in the simulations were doped withmultiple isotopes(e.g., Ca and Si). Geochemical modeling results show that the use of isotope tracers gives us orders of magnitude more sensitivity than the conventional method based on concentrations and allows us to decouple dissolution and precipitation reactions at near-equilibrium condition. The simulations suggest that the precise unidirectional dissolution rates can inform us which rate laws plagioclase dissolution has followed. Calcite precipitation occurred at near-equilibrium and the multiple isotope tracer experiments would provide near-equilibrium precipitation rates, which was a challenge for the conventional concentration-based experiments. In addition, whether the precipitation of clayey phases is the rate-limiting step in some multi-mineral systems will be revealed. Overall, the modeling results of multimineral reaction kinetics will improve the understanding of the coupled dissolution–precipitation in the multi-mineral systems and the quality of geochemical modeling prediction of CO_(2) removal and storage efficacy in the basalt systems. 展开更多
关键词 Kinetics FELDSPAR Isotope doping Near-equilibrium CO_(2)sequestration BASALT
在线阅读 下载PDF
上一页 1 2 82 下一页 到第
使用帮助 返回顶部