Homogeneous co-precipitation and hydrothermal treatment were used to prepare nano- and highly dispersed Ni O/YSZ(yttria-stabilized zirconia) composite powders. Composite powders of size less than 100 nm were successfu...Homogeneous co-precipitation and hydrothermal treatment were used to prepare nano- and highly dispersed Ni O/YSZ(yttria-stabilized zirconia) composite powders. Composite powders of size less than 100 nm were successfully prepared. This process did not require separate sintering of the YSZ and Ni O to be used as the raw materials for solid oxide fuel cells. The performance of a cell fabricated using the new powders(max.power density ~0.87 W/cm^2) was higher than that of a cell fabricated using conventional powders(max. power density ~0.73 W/cm^2). Co-precipitation and hydrothermal treatment proved to be very effective processes for reducing cell production costs as well as improving cell performance.展开更多
ZrO2 nanoparticles were prepared under high temperature and high pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. The effects of synthesis parameters, such as the concentratio...ZrO2 nanoparticles were prepared under high temperature and high pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. The effects of synthesis parameters, such as the concentration of starting solution, pH of starting solution, reaction temperature and time, were discussed. The results show that the ZrO2 nanoparticles are obtained at 230-270 ℃. The average size and size distribution of the synthesized particles are below 10 nm and narrow, respectively. The XRD pattern shows that the synthesized particles are composed of crystalline. The synthesis of ZrO2 nanosized crystalline particles is possible under glycothermal conditions in ethylene glycol solution.展开更多
Metallic Pd clusters were embedded into TiO2 nanoparticles that were synthesized within reverse micelle via a solution reduction of Pd(NO3)2 by hydrazine hydrate. The size of the particles can be controlled by manipul...Metallic Pd clusters were embedded into TiO2 nanoparticles that were synthesized within reverse micelle via a solution reduction of Pd(NO3)2 by hydrazine hydrate. The size of the particles can be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of titanium tetra-isopropoxide within the micro-emulsion. The spherical equivalent size for the Pd clusters formed in TiO2 matrix was estimated to be around (3±1) nm. The presence of Pd in the matrix was demonstrated by EDS spectroscopy. The effects of synthesis parameters, such as the concentration of Pd solution, the molar ratio of water to TIP, and the molar ratio of water to surfactant, were discussed.展开更多
Several researches have been reported about the characteristic of β-Ga_2O_3 nanowires which was synthesized on nickel oxide particle.But indeed,recent researches about synthesis of β-Ga_2O_3 nanowires on oxide-assis...Several researches have been reported about the characteristic of β-Ga_2O_3 nanowires which was synthesized on nickel oxide particle.But indeed,recent researches about synthesis of β-Ga_2O_3 nanowires on oxide-assisted transition metal are limited to nickel or cobalt oxide catalyst.In this work,Gallium oxide(β-Ga_2O_3)nanowires were synthesized by a simple thermal evaporation method from gallium powder in the range of 700-1000℃ using the iron,nickel,copper,cobalt and zinc oxide as a catalyst,respectively.The β-Ga_2O_3 nanowires with single crystalline without defects were successfully synthesized at the reaction temperature of 850,900 and 950℃ in all the catalysts.But optimum experimental condition in synthesis of nanowires varied with the kind of catalyst.As increasing synthesis temperature,the morphology of gallium oxide nanowires changed from nanowires to nanorods,and its diameter increased.From these results,we could be proposed that the growth mechanism of β-Ga_2O_3 nanowires was changed with synthesis temperature of nanowires.Microstructure and morphology of Synthesized nanowire was characterized by HR-TEM,FE-SEM,EDX and XRD.展开更多
The nanosized Ba(CoxNb1-x)O3(BCN) particles were prepared under high temperature and pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. Ba(CoxNb1-x)O3 powders were obtained in t...The nanosized Ba(CoxNb1-x)O3(BCN) particles were prepared under high temperature and pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. Ba(CoxNb1-x)O3 powders were obtained in the temperature range of 170-210 ℃ for 6 h. The results show that the average size of the synthesized particles increases with increasing reaction temperature. The average size of the synthesized particles is about 10 nm. The crystalline phase of the synthesized particles is found to be Ba(CoxNb1-x)O3. Ceramics derived from the nano BCN powders could achieve high sintering density at a relatively low sintering temperature.展开更多
The thermal stability and failure mechanism of thick thermal barrier coatings(TBCs) with and without vertical type cracks were investigated through the cyclic thermal exposure and thermal-shock tests. The TBC systems ...The thermal stability and failure mechanism of thick thermal barrier coatings(TBCs) with and without vertical type cracks were investigated through the cyclic thermal exposure and thermal-shock tests. The TBC systems with thickness of about 2000 μm in the top coat were prepared by an air plasma spray(APS) on the bond coat of about 150 μm in thickness prepared by APS. The adhesive strength values of the as-prepared TBCs with and without vertical type cracks were determined to be 24.7 and 11.0 MPa, respectively, indicating the better interface stability in the TBC with vertical type cracks. The TBC with vertical type cracks shows a better thermal durability than that without vertical type cracks in the thermal cyclic exposure and thermal-shock tests. The hardness values of the as-prepared TBCs with and without vertical type cracks were found to be 6.6 and 5.3 GPa, respectively, which were increased to 9.5 and 5.5 GPa, respectively, after the cyclic thermal exposure tests. These results indicate that the vertical type cracks developed in the top coat are important in improving the lifetime performance of thick TBC in high temperature environment.展开更多
A Gd-doped ceria(GDC) buffer layer is required between a conventional yttria-stabilized zirconia(YSZ) electrolyte and a La-Sr-Co-Fe-O3(LSCF) cathode to prevent their chemical reaction. In this study,the effect o...A Gd-doped ceria(GDC) buffer layer is required between a conventional yttria-stabilized zirconia(YSZ) electrolyte and a La-Sr-Co-Fe-O3(LSCF) cathode to prevent their chemical reaction. In this study,the effect of varying the conditions for fabricating the GDC buffer layer, such as sintering temperature and amount of sintering aid, on the solid oxide fuel cell(SOFC) performance was investigated. A finer GDC powder(i.e., ultra-high surface area), a higher sintering temperature(1290℃), and a larger amount of sintering aid(12%) resulted in improved densification of the buffer layer; however, the electrochemical performance of an anode-supported cell containing this GDC buffer layer was poor. These conflicting results are attributed to the formation of(Zr, Ce)O2 and/or excess cobalt grain boundaries(GBs) at higher sintering temperatures with a large amount of sintering aid(i.e., cobalt oxide). A cell comprising of a cobalt-free GDC buffer layer, which was fabricated using a low-temperature process, had lower cell resistance and higher stability. The results indicate that electrochemical performance and stability of SOFCs strongly depend on fabrication conditions for the GDC buffer layer.展开更多
For the first time AZ91 (MgAl9Zn1) and AM60 (MgAl6) Mg alloy foams with homogeneous pore structures were prepared successfully via melt foaming method using CaCO3 as blowing agent. It is revealed that the blowing ...For the first time AZ91 (MgAl9Zn1) and AM60 (MgAl6) Mg alloy foams with homogeneous pore structures were prepared successfully via melt foaming method using CaCO3 as blowing agent. It is revealed that the blowing gas to foam the melt is not CO2 but CO, which comes from liquid-solid reaction between Mg melt. The reaction temperature is more than 100℃ lower than CaCO3 decomposition, which makes Mg alloy melts foam into cellular structure much more easily in the temperature range from 690℃ to 750℃.展开更多
The effects of Ce addition on the microstructure, age hardening response and mechanical properties of an indirect-extruded Mg-5wt.%Sn-4Zn (TZ54) alloy were investigated. Addition of Ce accelerated the aging response w...The effects of Ce addition on the microstructure, age hardening response and mechanical properties of an indirect-extruded Mg-5wt.%Sn-4Zn (TZ54) alloy were investigated. Addition of Ce accelerated the aging response with the peak aging time moving from 300 h in TZ54 to 30 h in Mg-5wt.%Sn-4Zn-1Ce (TZE541), while the peak harness was similar to each other. The addition of Ce also caused an increase in the precipitation stability during overageing. Though the tensile strength of extruded TZ54 was improved by t...展开更多
Plasma electrolytic oxidation (PEO) is carried out on 6061 Al-alloys in a weak alkaline electrolyte containing NaOH, Na2SiO3 and NaCl. Centered on the correlation of composition and structure, analyses by means of X...Plasma electrolytic oxidation (PEO) is carried out on 6061 Al-alloys in a weak alkaline electrolyte containing NaOH, Na2SiO3 and NaCl. Centered on the correlation of composition and structure, analyses by means of X-ray diffration (XRD), scanning electron microscope (SEM) and energy dispersive spectrometry (EDS) are conducted on the specimens, which have been PEO-treated under hybrid voltages of different direct current (DC) values (140-280 V) with constant alternate current (AC) amplitude (200 V). Attention is paid to the composition, properties and growth mechanism of oxide layers formed with hybrid voltages. Moreover, the main effects of DC value are discussed. Ceramic layers with a double-layer structure which combines hard outer and soft inner layers are found to be consist of α-Al2O3,γ-Al2O3 and mullite. With the DC values increasing, the growth of the ceramic layers tends to have increasingly obvious three-stage feature.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A1013782)a fostering project funded by the Ministry of Education, Science and Technology (MEST)
文摘Homogeneous co-precipitation and hydrothermal treatment were used to prepare nano- and highly dispersed Ni O/YSZ(yttria-stabilized zirconia) composite powders. Composite powders of size less than 100 nm were successfully prepared. This process did not require separate sintering of the YSZ and Ni O to be used as the raw materials for solid oxide fuel cells. The performance of a cell fabricated using the new powders(max.power density ~0.87 W/cm^2) was higher than that of a cell fabricated using conventional powders(max. power density ~0.73 W/cm^2). Co-precipitation and hydrothermal treatment proved to be very effective processes for reducing cell production costs as well as improving cell performance.
基金supported by the Ministry of Education,Science Technology (MEST) and Korea Industrial Technology Foundation (KOTEF) through the Human Resource Training Project for Regional Innovation
文摘ZrO2 nanoparticles were prepared under high temperature and high pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. The effects of synthesis parameters, such as the concentration of starting solution, pH of starting solution, reaction temperature and time, were discussed. The results show that the ZrO2 nanoparticles are obtained at 230-270 ℃. The average size and size distribution of the synthesized particles are below 10 nm and narrow, respectively. The XRD pattern shows that the synthesized particles are composed of crystalline. The synthesis of ZrO2 nanosized crystalline particles is possible under glycothermal conditions in ethylene glycol solution.
基金supported by the Ministry of Education,Science Technology(MEST) and Korea Industrial Technology Foundation(KOTEF) through the Human Resource Training Project for Regional Innovation
文摘Metallic Pd clusters were embedded into TiO2 nanoparticles that were synthesized within reverse micelle via a solution reduction of Pd(NO3)2 by hydrazine hydrate. The size of the particles can be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of titanium tetra-isopropoxide within the micro-emulsion. The spherical equivalent size for the Pd clusters formed in TiO2 matrix was estimated to be around (3±1) nm. The presence of Pd in the matrix was demonstrated by EDS spectroscopy. The effects of synthesis parameters, such as the concentration of Pd solution, the molar ratio of water to TIP, and the molar ratio of water to surfactant, were discussed.
文摘Several researches have been reported about the characteristic of β-Ga_2O_3 nanowires which was synthesized on nickel oxide particle.But indeed,recent researches about synthesis of β-Ga_2O_3 nanowires on oxide-assisted transition metal are limited to nickel or cobalt oxide catalyst.In this work,Gallium oxide(β-Ga_2O_3)nanowires were synthesized by a simple thermal evaporation method from gallium powder in the range of 700-1000℃ using the iron,nickel,copper,cobalt and zinc oxide as a catalyst,respectively.The β-Ga_2O_3 nanowires with single crystalline without defects were successfully synthesized at the reaction temperature of 850,900 and 950℃ in all the catalysts.But optimum experimental condition in synthesis of nanowires varied with the kind of catalyst.As increasing synthesis temperature,the morphology of gallium oxide nanowires changed from nanowires to nanorods,and its diameter increased.From these results,we could be proposed that the growth mechanism of β-Ga_2O_3 nanowires was changed with synthesis temperature of nanowires.Microstructure and morphology of Synthesized nanowire was characterized by HR-TEM,FE-SEM,EDX and XRD.
基金supported by the Ministry of Education,Science Technology (MEST) and Korea Industrial Technology Foundation (KOTEF) through the Human Resource Training Project for Regional Innovation
文摘The nanosized Ba(CoxNb1-x)O3(BCN) particles were prepared under high temperature and pressure conditions by precipitation from metal nitrates with aqueous potassium hydroxide. Ba(CoxNb1-x)O3 powders were obtained in the temperature range of 170-210 ℃ for 6 h. The results show that the average size of the synthesized particles increases with increasing reaction temperature. The average size of the synthesized particles is about 10 nm. The crystalline phase of the synthesized particles is found to be Ba(CoxNb1-x)O3. Ceramics derived from the nano BCN powders could achieve high sintering density at a relatively low sintering temperature.
基金Project(2011-0030058) supported by the National Research Foundation of Korea(NRF) Funded by the Korean Government(MSIP)Project(20134030200220) supported by the Human Resources Development Program of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Funded by the Korea Government Ministry of Trade,Industry and Energy and by the Korea Institute of Materials Science(KIMS) in 2013
文摘The thermal stability and failure mechanism of thick thermal barrier coatings(TBCs) with and without vertical type cracks were investigated through the cyclic thermal exposure and thermal-shock tests. The TBC systems with thickness of about 2000 μm in the top coat were prepared by an air plasma spray(APS) on the bond coat of about 150 μm in thickness prepared by APS. The adhesive strength values of the as-prepared TBCs with and without vertical type cracks were determined to be 24.7 and 11.0 MPa, respectively, indicating the better interface stability in the TBC with vertical type cracks. The TBC with vertical type cracks shows a better thermal durability than that without vertical type cracks in the thermal cyclic exposure and thermal-shock tests. The hardness values of the as-prepared TBCs with and without vertical type cracks were found to be 6.6 and 5.3 GPa, respectively, which were increased to 9.5 and 5.5 GPa, respectively, after the cyclic thermal exposure tests. These results indicate that the vertical type cracks developed in the top coat are important in improving the lifetime performance of thick TBC in high temperature environment.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012013782)research funds of Changwon National University in 20122013
文摘A Gd-doped ceria(GDC) buffer layer is required between a conventional yttria-stabilized zirconia(YSZ) electrolyte and a La-Sr-Co-Fe-O3(LSCF) cathode to prevent their chemical reaction. In this study,the effect of varying the conditions for fabricating the GDC buffer layer, such as sintering temperature and amount of sintering aid, on the solid oxide fuel cell(SOFC) performance was investigated. A finer GDC powder(i.e., ultra-high surface area), a higher sintering temperature(1290℃), and a larger amount of sintering aid(12%) resulted in improved densification of the buffer layer; however, the electrochemical performance of an anode-supported cell containing this GDC buffer layer was poor. These conflicting results are attributed to the formation of(Zr, Ce)O2 and/or excess cobalt grain boundaries(GBs) at higher sintering temperatures with a large amount of sintering aid(i.e., cobalt oxide). A cell comprising of a cobalt-free GDC buffer layer, which was fabricated using a low-temperature process, had lower cell resistance and higher stability. The results indicate that electrochemical performance and stability of SOFCs strongly depend on fabrication conditions for the GDC buffer layer.
文摘For the first time AZ91 (MgAl9Zn1) and AM60 (MgAl6) Mg alloy foams with homogeneous pore structures were prepared successfully via melt foaming method using CaCO3 as blowing agent. It is revealed that the blowing gas to foam the melt is not CO2 but CO, which comes from liquid-solid reaction between Mg melt. The reaction temperature is more than 100℃ lower than CaCO3 decomposition, which makes Mg alloy melts foam into cellular structure much more easily in the temperature range from 690℃ to 750℃.
基金Project supported by the Fundamental R&D Program for Core Technology of Materials Funded by the Ministry of Knowledge Economy and the Center for Advanced Materials Processing (CAMP) of 21st Century Frontier R&D Program, Republic of Korea
文摘The effects of Ce addition on the microstructure, age hardening response and mechanical properties of an indirect-extruded Mg-5wt.%Sn-4Zn (TZ54) alloy were investigated. Addition of Ce accelerated the aging response with the peak aging time moving from 300 h in TZ54 to 30 h in Mg-5wt.%Sn-4Zn-1Ce (TZE541), while the peak harness was similar to each other. The addition of Ce also caused an increase in the precipitation stability during overageing. Though the tensile strength of extruded TZ54 was improved by t...
基金Changwon National University in 2008 and National IT Industry Program Agency(NIPA-2009-C-C1090-0903-0007)
文摘Plasma electrolytic oxidation (PEO) is carried out on 6061 Al-alloys in a weak alkaline electrolyte containing NaOH, Na2SiO3 and NaCl. Centered on the correlation of composition and structure, analyses by means of X-ray diffration (XRD), scanning electron microscope (SEM) and energy dispersive spectrometry (EDS) are conducted on the specimens, which have been PEO-treated under hybrid voltages of different direct current (DC) values (140-280 V) with constant alternate current (AC) amplitude (200 V). Attention is paid to the composition, properties and growth mechanism of oxide layers formed with hybrid voltages. Moreover, the main effects of DC value are discussed. Ceramic layers with a double-layer structure which combines hard outer and soft inner layers are found to be consist of α-Al2O3,γ-Al2O3 and mullite. With the DC values increasing, the growth of the ceramic layers tends to have increasingly obvious three-stage feature.