The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency ...The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency and the need for multiple separation operations.Here,we propose a process involving mixed HCl-H_(2)SO_(4) leaching-spray pyrolysis for recycling spent ternary LIBs,achieving both selective Li recovery and the preparation of a ternary oxide precursor.Specifically,the process transforms spent ternary cathode(LiNi_(x)Co_yMn_(2)O_(2),NCM) powder into Li_(2)SO_(4) solution and ternary oxide,which can be directly used for synthesizing battery-grade Li_(2)CO_(3) and NCM cathode,respectively.Notably,SO_(4)^(2-) selectively precipitates with Li^(+) to form thermostable Li_(2)SO_(4) during the spray pyrolysis,which substantially improves the Li recovery efficiency by inhibiting Li evaporation and intercalation.Besides,SO_(2) emissions are avoided by controlling the molar ratio of Li^(+)/SO_(4)^(2-)(≥2:1),The mechanism of the preferential formation of Li_(2)SO_(4) is interpreted from its reverse solubility variation with temperature.During the recycling of spent NCM811,92% of Li is selectively recovered,and the regenerated NCM811 exhibits excellent cycling stability with a capacity retention of 81.7% after 300 cycles at 1 C.This work offers a simple and robust process for the recycling of spent NCM cathodes.展开更多
Porosity,tortuosity,specific surface area(SSA),and permeability are four key parameters of reactive transport modeling in sandstone,which are important for understanding solute transport and geochemical reaction pro-c...Porosity,tortuosity,specific surface area(SSA),and permeability are four key parameters of reactive transport modeling in sandstone,which are important for understanding solute transport and geochemical reaction pro-cesses in sandstone aquifers.These four parameters reflect the characteristics of pore structure of sandstone from different perspectives,and the traditional empirical formulas cannot make accurate predictions of them due to their complexity and heterogeneity.In this paper,eleven types of sandstone CT images were firstly segmented into numerous subsample images,the porosity,tortuosity,SSA,and permeability of the subsamples were calculated,and the dataset was established.The 3D convolutional neural network(CNN)models were subse-quently established and trained to predict the key reactive transport parameters based on subsample CT images of sandstones.The results demonstrated that the 3D CNN model with multiple outputs exhibited excellent prediction ability for the four parameters compared to the traditional empirical formulas.In particular,for the prediction of tortuosity and permeability,the 3D CNN model with multiple outputs even showed slightly better prediction ability than its single-output variant model.Additionally,it demonstrated good generalization per-formance on sandstone CT images not included in the training dataset.The study showed that the 3D CNN model with multiple outputs has the advantages of simplifying operation and saving computational resources,which has the prospect of popularization and application.展开更多
In the process of in situ leaching of uranium,the microstructure controls and influences the flow distribution,percolation characteristics,and reaction mechanism of lixivium in the pores of reservoir rocks and directl...In the process of in situ leaching of uranium,the microstructure controls and influences the flow distribution,percolation characteristics,and reaction mechanism of lixivium in the pores of reservoir rocks and directly affects the leaching of useful components.In this study,the pore throat,pore size distribution,and mineral composition of low-permeability uranium-bearing sandstone were quantitatively analyzed by high pressure mercury injection,nuclear magnetic resonance,X-ray diffraction,and wavelength-dispersive X-ray fluorescence.The distribution characteristics of pores and minerals in the samples were qualitatively analyzed using energy-dispersive scanning electron microscopy and multi-resolution CT images.Image registration with the landmarks algorithm provided by FEI Avizo was used to accurately match the CT images with different resolutions.The multi-scale and multi-mineral digital core model of low-permeability uranium-bearing sandstone is reconstructed through pore segmentation and mineral segmentation of fusion core scanning images.The results show that the pore structure of low-permeability uranium-bearing sandstone is complex and has multi-scale and multi-crossing characteristics.The intergranular pores determine the main seepage channel in the pore space,and the secondary pores have poor connectivity with other pores.Pyrite and coffinite are isolated from the connected pores and surrounded by a large number of clay minerals and ankerite cements,which increases the difficulty of uranium leaching.Clays and a large amount of ankerite cement are filled in the primary and secondary pores and pore throats of the low-permeability uraniumbearing sandstone,which significantly reduces the porosity of the movable fluid and results in low overall permeability of the cores.The multi-scale and multi-mineral digital core proposed in this study provides a basis for characterizing macroscopic and microscopic pore-throat structures and mineral distributions of low-permeability uranium-bearing sandstone and can better understand the seepage characteristics.展开更多
This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry ...This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry out cyclic impact tests on granite samples,each having a circular hole,under different axial pressures,and the cumulative specific energy was proposed to characterize the damage characteristics of the rock during the cyclic impact.The mechanical properties and the energy absorbed by the granite samples under cyclic impact loads were analyzed.The results showed that under different axial pressures,the reflected waveform from the samples was characterized by“double-peak”phenomenon,which gradually changed to“single-peak”wi th the increase in damage value.The dynamic peak stress of the sample first increased and then decreased with an increase in impact times.The damage value criterion established based on the energy dissipation could well characterize the relationship between the damage and the number of impacts,which showed a slow increase,steady increase,and high-speed increase,and the damage value depended mainly on the last impact.Under the action of different axial pressures,all the failure modes of the samples were axial splitting failures.As the strain rate increased,with an increase in the dimension of the block,the sizes of the rock fragments decreased,and the fragmentation became more severe.展开更多
Microwave heating contributes to coal fracturing and gas desorption. However, problems of low penetration depth, local overheating and fracture closure exist. Coal demineralisation by acids has advantages in coal unbl...Microwave heating contributes to coal fracturing and gas desorption. However, problems of low penetration depth, local overheating and fracture closure exist. Coal demineralisation by acids has advantages in coal unblocking and permeability improvement, while it is difficult for acid to enter microcracks.Microwave-asisted acidification may offer an alternative. In this work, XRD,^(1)H-NMR, and SEM were used to evaluate the effect of microwave-assisted acidification on the microstructure of coal. Results show that kaolinite, calcite, and dolomite can be dissolved by acid. After microwave irradiation, the graphitization of microcrystalline structure of carbon improves. Microwave-assisted acidification erodes minerals in coal and enhances the graphitization degree of microcrystalline structure. Compared to individual microwave irradiation or acidification, the pore volume and pore connectivity can be greatly enhanced by microwave-assisted acidification. The NMR permeability of coal increased by 28.05%. This study demonstrates the potential of microwave-assisted acidification for coalbed methane recovery.展开更多
Pressure nozzle is commonly used in the dust-reduction techniques by spraying of underground coal mines.Based on the internal structure,the pressure nozzle can be divided into the following types:spiral channel nozzle...Pressure nozzle is commonly used in the dust-reduction techniques by spraying of underground coal mines.Based on the internal structure,the pressure nozzle can be divided into the following types:spiral channel nozzle,tangential flow-guided nozzle and X-swirl nozzle.In order to provide better guidance on the selection of nozzles for the coal mine dust-reduction systems by spraying,we designed comparing experiments to study the atomization characteristics and dust-reduction performance of four commonly used nozzles in the coal mine underground with different internal structures.From the experimental results on the atomization characteristics,both the tangential flow-guided nozzle and the X-swirl nozzle have high flow coefficients.The atomization angle is the largest in the spiral non-porous nozzle,and smallest in both the X-swirl nozzle and the spiral porous nozzle.The spraying range and the droplet velocity are inversely proportional to the atomization angle.When the water pressure is low,the atomization performance of the spiral non-porous nozzle is the best among the four types of nozzles.The atomization performance of the X-swirl nozzle is superior to other types when the water pressure is high.Under the high water pressure,the particle size of the atomized droplets is smallest in the X-swirl nozzle.Through the experiments on the dust-reduction performance of the four types of nozzles and the comprehensive analysis,the X-swirl nozzle is recommended for the coal mine application site with low water pressure in the dust-reduction system,while at the sites with high water pressure,the spiral non-porous nozzle is recommended,which has the lowest water consumption and obvious economic advantages.展开更多
In order to investigate the stability problem of shield tunnel faces subjected to seismic loading,the pseudodynamic method(P-DM)was employed to analyze the seismic effect on the face.Two kinds of failure mechanisms of...In order to investigate the stability problem of shield tunnel faces subjected to seismic loading,the pseudodynamic method(P-DM)was employed to analyze the seismic effect on the face.Two kinds of failure mechanisms of active collapse and passive extrusion were considered,and a seismic reliability model of shield tunnel faces under multifailure mode was established.The limit analysis method and the response surface method(RSM)were used together to solve the reliability of shield tunnel faces subjected to seismic action.Comparing with existing results,the results of this work are effective.The effects of seismic load and rock mass strength on the collapse pressure,extrusion pressure and reliability index were discussed,and reasonable ranges of support pressure of shield tunnel faces under seismic action were presented.This method can provide a new idea for solving the shield thrust parameter under the seismic loading.展开更多
A severe accident in a marine nuclear reactor leads to radionuclide leakage,which causes hidden dangers to workers and has adverse effects of environmental pollution.It is necessary to propose a novel approach to radi...A severe accident in a marine nuclear reactor leads to radionuclide leakage,which causes hidden dangers to workers and has adverse effects of environmental pollution.It is necessary to propose a novel approach to radionuclide diffusion in a confined environment after a severe accident in a marine nuclear reactor.Therefore,this study proposes a new method for the severe accident analysis program MELCOR coupled with computational fluid dynamics scSTREAM to study radioactive diffusion in severe accidents.The radionuclide release fraction and temperature calculated by MELCOR were combined with the scSTREAM calculations to study the radionuclide diffusion behavior and the phenomenon of radionuclide diffusion in different space environments of the reactor under the conditions of varying wind velocities of the ventilation system and diffusion speed.The results show that the wind velocity of the ventilation system is very small or zero,and the turbulent diffusion of radionuclides is not obvious and diffuses slowly in the form of condensation sedimentation and gravity settlement.When the wind speed of the ventilation system increases,the flow of radionuclides meets the wall and forms eddy currents,affecting the time variation of radionuclides diffusing into chamber 2.The wind velocity of the ventilation system and the diffusion speed has opposite effects on the time variation trend of radionuclide diffusion into the four chambers.展开更多
Debris-covered glaciers,characterized by the presence of supraglacial debris mantles in their ablation zones,are widespread in the China-Pakistan Economic Corridor(CPEC)and surroundings.For these glaciers,thin debris ...Debris-covered glaciers,characterized by the presence of supraglacial debris mantles in their ablation zones,are widespread in the China-Pakistan Economic Corridor(CPEC)and surroundings.For these glaciers,thin debris layers accelerate the melting of underlying ice compared to that of bare ice,while thick debris layers retard ice melting,called debriscover effect.Knowledge about the thickness and thermal properties of debris cover on CPEC glaciers is still unclear,making it difficult to assess the regional debris-cover effect.In this study,thermal resistance of the debris layer estimated from remotely sensed data reveals that about 54.0%of CPEC glaciers are debris-covered glaciers,on which the total debris-covered area is about 5,072 km2,accounting for 14.0%of the total glacier area of the study region.We find that marked difference in the extent and thickness of debris cover is apparent from region to region,as well as the debris-cover effect.53.3%of the total debris-covered area of the study region is concentrated in Karakoram,followed by Pamir with 30.2%of the total debris-covered area.As revealed by the thermal resistance,the debris thickness is thick in Hindu Kush on average,with the mean thermal resistance of 7.0×10^-2((m^2∙K)/W),followed by Karakoram,while the thickness in western Himalaya is thin with the mean value of 2.0×10^-2((m^2∙K)/W).Our findings provide a basis for better assessments of changes in debriscovered glaciers and their associated hydrological impacts in the CPEC and surroundings.展开更多
A total of 71,177 glaciers exist on the Qinghai-Tibet Plateau,according to the Randolph Glacier Inventory(RGI 6.0).Despite their large number,glacier ice thickness data are relatively scarce.This study utilizes digita...A total of 71,177 glaciers exist on the Qinghai-Tibet Plateau,according to the Randolph Glacier Inventory(RGI 6.0).Despite their large number,glacier ice thickness data are relatively scarce.This study utilizes digital elevation model data and ground-penetrating radar thickness measurements to estimate the distribution and variation of ice thickness of the Longbasaba Glacier using Glacier bed Topography(GlabTop),a full-width expansion model,and the Huss and Farinotti(HF)model.Results show that the average absolute deviations of GlabTop,the full-width expansion model,and the HF model are 9.8,15.5,and 10.9 m,respectively,indicating that GlabTop performs the best in simulating glacier thickness distribution.During 1980−2015,the Longbasaba Glacier thinned by an average of 7.9±1.3 m or 0.23±0.04 m/a,and its ice volume shrunk by 0.28±0.04 km3 with an average reduction rate of 0.0081±0.0001 km^3/a.In the investigation period,the area and volume of Longbasaba Lake expanded at rates of 0.12±0.01 km^2/a and 0.0132±0.0018 km3/a,respectively.This proglacial lake could potentially extend up to 5,000 m from the lake dam.展开更多
Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechani...Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process.展开更多
Coking coal dust is extremely hydrophobic;therefore,combination with droplets in the air is difficult and dust suppression is challenging.Here,a dust suppressant spray for coking coal dust was studied in order to impr...Coking coal dust is extremely hydrophobic;therefore,combination with droplets in the air is difficult and dust suppression is challenging.Here,a dust suppressant spray for coking coal dust was studied in order to improve of the combination of droplets and coking coal dust.Based on monomer optimization and compounding analysis,two surfactant monomers,fatty alcohol ether sodium sulfate(AES)and sodium dodecyl benzene sulfonate(SDBS)were selected as the surfactant components of the dust suppressant.The surfactant monomers were combined with four inorganic salts and the reverse osmosis moisture absorption of each solution was determined.By combining the reverse osmosis moisture absorption values with the water retention experimental results,CaCl_(2)was identified as the optimal inorganic salt additive for the dust suppressant.Finally,the optimal concentration of each component was obtained using orthogonal experimental design i.e.,AES(0.03%),SDBS(0.05%),and CaCl_(2)(0.4%).The dust suppressant solution formulated using this method had a high moisture absorption capacity and excellent performance.展开更多
Mountain glacier-related hazards occur worldwide in response to increasing glacier instability and human activity intensity in modern glacierized regions.These hazards are characterized by their spatial aggregation an...Mountain glacier-related hazards occur worldwide in response to increasing glacier instability and human activity intensity in modern glacierized regions.These hazards are characterized by their spatial aggregation and temporal repeatability.Comprehensive knowledge about mountain glacier-related hazards is critical for hazard assessment,mitigation,and prevention in the mountain cryosphere and downstream regions.This article systematically schematizes various mountain glacier-related hazards and analyzes their inherent associations with glacier changes.Besides,the processes,manifestations,and mechanisms of each of the glacier-related hazards are summarized.In the future,more extensive and detailed systematic surveys,for example,considering integrated ground−air−space patterns,should be undertaken for typical glacierized regions to enhance existing knowledge of such hazards.The use of coupled numerical models based on multisource data is challenging but will be essential to improve our understanding of the complex chain of processes involved in thermal−hydrogeomorphic glacier-related hazards in the mountain cryosphere.展开更多
Based onmultiphase flowtheory and capillary mechanics,the dimensionless bond number expression of the influence of string grille wire spacing on droplet spreading is derived.Taking a liquid film formed by spreading dr...Based onmultiphase flowtheory and capillary mechanics,the dimensionless bond number expression of the influence of string grille wire spacing on droplet spreading is derived.Taking a liquid film formed by spreading droplets based on Kelvin correlation,the Young-Laplace equation,and the Hagen-Poiseuille law,an equation for calculating the thickness and height of the liquid film is established with temperature,relative humidity and molar volume of liquid phase as independent variables.According to the theory of string grille filtration and dust removal,a dust removal efficiency calculation model covering the wet string grille wire group is constructed based on the liquid film thickness,height,wire diameter,water film area,and vortex shedding frequency.Finally,a theoretical analysis of the influence of water film area on the efficiency of wet string grille dust removal is carried out based on the spray pressure and the ratio of string grille wire distance to wire diameter.It is found that the effect of spray pressure on water film area and dust removal efficiency is more significant than the string grille wire distance diameter ratio.Moreover,the optimized combination of wet string grille wire distance diameter ratio 0.84,wind speed 3m/s and spray pressure 0.8 MPa is found,which could provide an important reference for engineering applications.展开更多
Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is ...Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.展开更多
In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression ...In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression tests and three-dimensional numerical simulation tests were carried out on hollow granite specimens with different diameters.The bearing capacity of hollow cylindrical specimen is analyzed based on elasticity.The results show that:1)Under low confining pressure,the tensile strain near the hole of the hollow cylindrical specimen is obvious,and the specimen deformation near the hole is significant.At the initial stage of loading,the compressive stress and compressive strain of the specimen are widely distributed.With the progress of loading,the number of microelements subjected to tensile strain gradually increases,and even spreads throughout the specimen;2)Under conventional triaxial compression,the cracking position of hollow cylinder specimens is concentrated in the upper and lower parts,and the final fracture mode is generally compressive shear failure.The final fracture mode of complete specimen is generally tensile fracture.Under high confining pressure,the tensile cracks of the sample are concentrated in the upper and lower parts and are not connected,while the cracks of the upper and lower parts of the intact sample will expand and connect to form a fracture surface;3)In addition,the tensile crack widths of intact and hollow cylindrical specimens under low confining pressure are larger than those under high confining pressure.展开更多
The mining method optimization in subsea deep gold mines was studied. First, an index system for subsea mining method selection was established based on technical feasibility, security status, economic benefit, and ma...The mining method optimization in subsea deep gold mines was studied. First, an index system for subsea mining method selection was established based on technical feasibility, security status, economic benefit, and management complexity. Next, an evaluation matrix containing crisp numbers and triangular fuzzy numbers(TFNs) was constructed to describe quantitative and qualitative information simultaneously. Then, a hybrid model combining fuzzy theory and the Tomada de Decis?o Interativa Multicritério(TODIM) method was proposed. Finally, the feasibility of the proposed approach was validated by an illustrative example of selecting the optimal mining method in the Sanshandao Gold Mine(China). The robustness of this approach was demonstrated through a sensitivity analysis. The results show that the proposed hybrid TODIM method is reliable and stable for choosing the optimal mining method in subsea deep gold mines and provides references for mining method optimization in other similar undersea mines.展开更多
Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process...Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process.In this study,the leaching kinetics of REEs from PG in nitric acid at different temperatures were explored in depth.The experiments show that the maximum leaching recovery for ΣREE was 58.5%,75.9%and 83.4%at 30,60 and 80℃,respectively.Additionally,among La,Ce,Y and Nd,Y had the highest leaching rate.A new shrinking core model(SCM)based on the dissolution reaction of a cylindrical solid particle with interfacial transfer and diffusion across the product layer as the rate-controlling step was deduced and could well fit the leaching process of REEs from PG.The activation energies for the leaching of La,Ce,Y and Nd were determined on the basis of the new cylindrical SCM.In summary,the cylindrical SCM was a more suitable fitting model than the spherical SCM,and the interfacial transfer and diffusion across the product layer were the rate-controlling step for REE leaching from the PG sample.展开更多
The Co-free Li Ni_(0.5)Mn_(1.5)O_(4)(LNMO)is a promising cathode for lithium-ion batteries owing to its high operating voltage and low costs.However,the synthesis of LNMO is generally time and energy consuming,and its...The Co-free Li Ni_(0.5)Mn_(1.5)O_(4)(LNMO)is a promising cathode for lithium-ion batteries owing to its high operating voltage and low costs.However,the synthesis of LNMO is generally time and energy consuming,and its practical application is hindered by the lack of a compatible electrolyte.Herein,a spray pyrolysis-based energy-saving synthesis method as well as a diluted low concentration electrolyte(0.5 M LiPF_(6) in a mixture of fluoroethylene carbonate/dimethyl carbonate/1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether(FEC:DMC:TTE,1:4:5 by volume))are proposed to address these challenges.Owing to the unique features of the precursor prepared by spray pyrolysis,well-crystallized LNMO single-crystal can be obtained within 1 h calcination at 900℃.Besides,the fluorinated interphases derived from the diluted low concentration electrolyte not only mitigate the Mn dissolution and Al corrosion at the cathode side,but also suppresses dendritic Li deposition at the anode side,thus enabling stable cycling of both LNMO and Li metal anode.Thus,30μm Li|LNMO(1.75 m A h cm^(-2))cells achieve a high capacity retention(90.9%)after 168 cycles in the diluted low concentration electrolyte.展开更多
The massive accumulation of flue gas desulfurization(FGD)gypsum produced in the wet limestone-gypsum flue gas desulfurization process not only encroaches on lands but also causes serious environmental pollution.The pr...The massive accumulation of flue gas desulfurization(FGD)gypsum produced in the wet limestone-gypsum flue gas desulfurization process not only encroaches on lands but also causes serious environmental pollution.The preparation ofα-hemihydrate gypsum(α-HH)is an important way to achieve high-value utilization of FGD gypsum.Although the glycerol-water solution approach can be used to produceα-HH from FGD gypsum under mild conditions,the transition is kinetically unfavorable in the mixed solution.Here,an easy pretreatment was used to activate FGD gypsum by calcination and hydration to readily complete the transition.The pretreatment deteriorated the crystallinity of FGD gypsum and caused it to form small irregular flaky crystals,which dramatically increased the specific surface area.Additionally,most of the organics adsorbed onto FGD gypsum surfaces were removed after pretreatment.The poor crystallinity,increased specific surface area,and elimination of organics adsorbed onto crystal surfaces effectively improved the conversion activity of FGD gypsum,thereby promoting dihydrate gypsum(DH)dissolution andα-HH nucleation.Overall,the phase transition of FGD gypsum toα-HH is facilitated.展开更多
基金Fund of University of South China (201RGC013 and 200XQD052)。
文摘The recycling of spent lithium-ion batteries(LIBs) is crucial for environmental protection and resource sustainability.However,the economic recovery of spent LIBs remains challenging due to low Li recovery efficiency and the need for multiple separation operations.Here,we propose a process involving mixed HCl-H_(2)SO_(4) leaching-spray pyrolysis for recycling spent ternary LIBs,achieving both selective Li recovery and the preparation of a ternary oxide precursor.Specifically,the process transforms spent ternary cathode(LiNi_(x)Co_yMn_(2)O_(2),NCM) powder into Li_(2)SO_(4) solution and ternary oxide,which can be directly used for synthesizing battery-grade Li_(2)CO_(3) and NCM cathode,respectively.Notably,SO_(4)^(2-) selectively precipitates with Li^(+) to form thermostable Li_(2)SO_(4) during the spray pyrolysis,which substantially improves the Li recovery efficiency by inhibiting Li evaporation and intercalation.Besides,SO_(2) emissions are avoided by controlling the molar ratio of Li^(+)/SO_(4)^(2-)(≥2:1),The mechanism of the preferential formation of Li_(2)SO_(4) is interpreted from its reverse solubility variation with temperature.During the recycling of spent NCM811,92% of Li is selectively recovered,and the regenerated NCM811 exhibits excellent cycling stability with a capacity retention of 81.7% after 300 cycles at 1 C.This work offers a simple and robust process for the recycling of spent NCM cathodes.
基金supported by the National Natural Science Foundation of China (12105139 and 42277264)National Key Research and Development Program of China (2021YFC2902104)Education Department of Hunan Province (21B0446).
文摘Porosity,tortuosity,specific surface area(SSA),and permeability are four key parameters of reactive transport modeling in sandstone,which are important for understanding solute transport and geochemical reaction pro-cesses in sandstone aquifers.These four parameters reflect the characteristics of pore structure of sandstone from different perspectives,and the traditional empirical formulas cannot make accurate predictions of them due to their complexity and heterogeneity.In this paper,eleven types of sandstone CT images were firstly segmented into numerous subsample images,the porosity,tortuosity,SSA,and permeability of the subsamples were calculated,and the dataset was established.The 3D convolutional neural network(CNN)models were subse-quently established and trained to predict the key reactive transport parameters based on subsample CT images of sandstones.The results demonstrated that the 3D CNN model with multiple outputs exhibited excellent prediction ability for the four parameters compared to the traditional empirical formulas.In particular,for the prediction of tortuosity and permeability,the 3D CNN model with multiple outputs even showed slightly better prediction ability than its single-output variant model.Additionally,it demonstrated good generalization per-formance on sandstone CT images not included in the training dataset.The study showed that the 3D CNN model with multiple outputs has the advantages of simplifying operation and saving computational resources,which has the prospect of popularization and application.
基金This work was supported by the National Natural Science Foundation of China(No.11775107)the Key Projects of Education Department of Hunan Province of China(No.16A184).
文摘In the process of in situ leaching of uranium,the microstructure controls and influences the flow distribution,percolation characteristics,and reaction mechanism of lixivium in the pores of reservoir rocks and directly affects the leaching of useful components.In this study,the pore throat,pore size distribution,and mineral composition of low-permeability uranium-bearing sandstone were quantitatively analyzed by high pressure mercury injection,nuclear magnetic resonance,X-ray diffraction,and wavelength-dispersive X-ray fluorescence.The distribution characteristics of pores and minerals in the samples were qualitatively analyzed using energy-dispersive scanning electron microscopy and multi-resolution CT images.Image registration with the landmarks algorithm provided by FEI Avizo was used to accurately match the CT images with different resolutions.The multi-scale and multi-mineral digital core model of low-permeability uranium-bearing sandstone is reconstructed through pore segmentation and mineral segmentation of fusion core scanning images.The results show that the pore structure of low-permeability uranium-bearing sandstone is complex and has multi-scale and multi-crossing characteristics.The intergranular pores determine the main seepage channel in the pore space,and the secondary pores have poor connectivity with other pores.Pyrite and coffinite are isolated from the connected pores and surrounded by a large number of clay minerals and ankerite cements,which increases the difficulty of uranium leaching.Clays and a large amount of ankerite cement are filled in the primary and secondary pores and pore throats of the low-permeability uraniumbearing sandstone,which significantly reduces the porosity of the movable fluid and results in low overall permeability of the cores.The multi-scale and multi-mineral digital core proposed in this study provides a basis for characterizing macroscopic and microscopic pore-throat structures and mineral distributions of low-permeability uranium-bearing sandstone and can better understand the seepage characteristics.
基金Projects(51804163,52004130)supported by the National Natural Science Foundation of ChinaProject(2018 M 642678)supported by the China Postdoctoral Science Foundation。
文摘This study investigated the effect of repeated blasting on the stability of surrounding rock during the construction of a tunnel or city underground engineering.The split Hopkinson pressure bar(SHPB)was used to carry out cyclic impact tests on granite samples,each having a circular hole,under different axial pressures,and the cumulative specific energy was proposed to characterize the damage characteristics of the rock during the cyclic impact.The mechanical properties and the energy absorbed by the granite samples under cyclic impact loads were analyzed.The results showed that under different axial pressures,the reflected waveform from the samples was characterized by“double-peak”phenomenon,which gradually changed to“single-peak”wi th the increase in damage value.The dynamic peak stress of the sample first increased and then decreased with an increase in impact times.The damage value criterion established based on the energy dissipation could well characterize the relationship between the damage and the number of impacts,which showed a slow increase,steady increase,and high-speed increase,and the damage value depended mainly on the last impact.Under the action of different axial pressures,all the failure modes of the samples were axial splitting failures.As the strain rate increased,with an increase in the dimension of the block,the sizes of the rock fragments decreased,and the fragmentation became more severe.
基金supported by the National Natural Science Foundation of China (Nos. 52274195, 52274196, 51904103, and 52174180)the Science and Technology Innovation Program of Hunan Province (No. 2022RC1178)+1 种基金Hunan Provincial Natural Science Foundation of China (Nos. 2022JJ20024, and 2021JJ30254)Scientific Research Foundation of Hunan Provincial Education Department (No. 21B0465)。
文摘Microwave heating contributes to coal fracturing and gas desorption. However, problems of low penetration depth, local overheating and fracture closure exist. Coal demineralisation by acids has advantages in coal unblocking and permeability improvement, while it is difficult for acid to enter microcracks.Microwave-asisted acidification may offer an alternative. In this work, XRD,^(1)H-NMR, and SEM were used to evaluate the effect of microwave-assisted acidification on the microstructure of coal. Results show that kaolinite, calcite, and dolomite can be dissolved by acid. After microwave irradiation, the graphitization of microcrystalline structure of carbon improves. Microwave-assisted acidification erodes minerals in coal and enhances the graphitization degree of microcrystalline structure. Compared to individual microwave irradiation or acidification, the pore volume and pore connectivity can be greatly enhanced by microwave-assisted acidification. The NMR permeability of coal increased by 28.05%. This study demonstrates the potential of microwave-assisted acidification for coalbed methane recovery.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.51574123)the Hunan Provincial Natural Science Foundation of China(No.2017JJ3076)Hunan Graduate Research and Innovation Project(No.CX2018B661),are gratefully acknowledged.
文摘Pressure nozzle is commonly used in the dust-reduction techniques by spraying of underground coal mines.Based on the internal structure,the pressure nozzle can be divided into the following types:spiral channel nozzle,tangential flow-guided nozzle and X-swirl nozzle.In order to provide better guidance on the selection of nozzles for the coal mine dust-reduction systems by spraying,we designed comparing experiments to study the atomization characteristics and dust-reduction performance of four commonly used nozzles in the coal mine underground with different internal structures.From the experimental results on the atomization characteristics,both the tangential flow-guided nozzle and the X-swirl nozzle have high flow coefficients.The atomization angle is the largest in the spiral non-porous nozzle,and smallest in both the X-swirl nozzle and the spiral porous nozzle.The spraying range and the droplet velocity are inversely proportional to the atomization angle.When the water pressure is low,the atomization performance of the spiral non-porous nozzle is the best among the four types of nozzles.The atomization performance of the X-swirl nozzle is superior to other types when the water pressure is high.Under the high water pressure,the particle size of the atomized droplets is smallest in the X-swirl nozzle.Through the experiments on the dust-reduction performance of the four types of nozzles and the comprehensive analysis,the X-swirl nozzle is recommended for the coal mine application site with low water pressure in the dust-reduction system,while at the sites with high water pressure,the spiral non-porous nozzle is recommended,which has the lowest water consumption and obvious economic advantages.
基金Projects(51804113,52074116)supported by the National Natural Science Foundation of ChinaProject(2020M682563)supported by the China Postdoctoral Science Foundation+1 种基金Project(19C0743)supported by the Scientific Research Foundation of Hunan Provincial Education Department,ChinaProject(E52076)supported by the Science Foundation of Hunan University of Science and Technology,China。
文摘In order to investigate the stability problem of shield tunnel faces subjected to seismic loading,the pseudodynamic method(P-DM)was employed to analyze the seismic effect on the face.Two kinds of failure mechanisms of active collapse and passive extrusion were considered,and a seismic reliability model of shield tunnel faces under multifailure mode was established.The limit analysis method and the response surface method(RSM)were used together to solve the reliability of shield tunnel faces subjected to seismic action.Comparing with existing results,the results of this work are effective.The effects of seismic load and rock mass strength on the collapse pressure,extrusion pressure and reliability index were discussed,and reasonable ranges of support pressure of shield tunnel faces under seismic action were presented.This method can provide a new idea for solving the shield thrust parameter under the seismic loading.
基金supported by the Postgraduate Scientific Research Innovation Project of Hunan Province (No. CX20210922)
文摘A severe accident in a marine nuclear reactor leads to radionuclide leakage,which causes hidden dangers to workers and has adverse effects of environmental pollution.It is necessary to propose a novel approach to radionuclide diffusion in a confined environment after a severe accident in a marine nuclear reactor.Therefore,this study proposes a new method for the severe accident analysis program MELCOR coupled with computational fluid dynamics scSTREAM to study radioactive diffusion in severe accidents.The radionuclide release fraction and temperature calculated by MELCOR were combined with the scSTREAM calculations to study the radionuclide diffusion behavior and the phenomenon of radionuclide diffusion in different space environments of the reactor under the conditions of varying wind velocities of the ventilation system and diffusion speed.The results show that the wind velocity of the ventilation system is very small or zero,and the turbulent diffusion of radionuclides is not obvious and diffuses slowly in the form of condensation sedimentation and gravity settlement.When the wind speed of the ventilation system increases,the flow of radionuclides meets the wall and forms eddy currents,affecting the time variation of radionuclides diffusing into chamber 2.The wind velocity of the ventilation system and the diffusion speed has opposite effects on the time variation trend of radionuclide diffusion into the four chambers.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.41761144075,41671057,and 41771075)the Research Funds for New Talents of Yunnan University(YJRC3201702).
文摘Debris-covered glaciers,characterized by the presence of supraglacial debris mantles in their ablation zones,are widespread in the China-Pakistan Economic Corridor(CPEC)and surroundings.For these glaciers,thin debris layers accelerate the melting of underlying ice compared to that of bare ice,while thick debris layers retard ice melting,called debriscover effect.Knowledge about the thickness and thermal properties of debris cover on CPEC glaciers is still unclear,making it difficult to assess the regional debris-cover effect.In this study,thermal resistance of the debris layer estimated from remotely sensed data reveals that about 54.0%of CPEC glaciers are debris-covered glaciers,on which the total debris-covered area is about 5,072 km2,accounting for 14.0%of the total glacier area of the study region.We find that marked difference in the extent and thickness of debris cover is apparent from region to region,as well as the debris-cover effect.53.3%of the total debris-covered area of the study region is concentrated in Karakoram,followed by Pamir with 30.2%of the total debris-covered area.As revealed by the thermal resistance,the debris thickness is thick in Hindu Kush on average,with the mean thermal resistance of 7.0×10^-2((m^2∙K)/W),followed by Karakoram,while the thickness in western Himalaya is thin with the mean value of 2.0×10^-2((m^2∙K)/W).Our findings provide a basis for better assessments of changes in debriscovered glaciers and their associated hydrological impacts in the CPEC and surroundings.
基金The work was funded by the National Natural Science Foundation of China(No.41701061,No.41761144075,No.41771075,and No.41271091).
文摘A total of 71,177 glaciers exist on the Qinghai-Tibet Plateau,according to the Randolph Glacier Inventory(RGI 6.0).Despite their large number,glacier ice thickness data are relatively scarce.This study utilizes digital elevation model data and ground-penetrating radar thickness measurements to estimate the distribution and variation of ice thickness of the Longbasaba Glacier using Glacier bed Topography(GlabTop),a full-width expansion model,and the Huss and Farinotti(HF)model.Results show that the average absolute deviations of GlabTop,the full-width expansion model,and the HF model are 9.8,15.5,and 10.9 m,respectively,indicating that GlabTop performs the best in simulating glacier thickness distribution.During 1980−2015,the Longbasaba Glacier thinned by an average of 7.9±1.3 m or 0.23±0.04 m/a,and its ice volume shrunk by 0.28±0.04 km3 with an average reduction rate of 0.0081±0.0001 km^3/a.In the investigation period,the area and volume of Longbasaba Lake expanded at rates of 0.12±0.01 km^2/a and 0.0132±0.0018 km3/a,respectively.This proglacial lake could potentially extend up to 5,000 m from the lake dam.
基金supported by the National Natural Science Foundation of China(Grant No.11705086)the National Science Foundation of Hunan Province,China(Grant No.2018JJ3424)the Foundation of Hunan Educational Committee(Grant No.16C1387).
文摘Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process.
基金The project was supported by the National Natural Science Foundation of China(No.51574123)the Scientific Research Project of Hunan Province Office of Education(No.18A185),which is gratefully acknowledged.
文摘Coking coal dust is extremely hydrophobic;therefore,combination with droplets in the air is difficult and dust suppression is challenging.Here,a dust suppressant spray for coking coal dust was studied in order to improve of the combination of droplets and coking coal dust.Based on monomer optimization and compounding analysis,two surfactant monomers,fatty alcohol ether sodium sulfate(AES)and sodium dodecyl benzene sulfonate(SDBS)were selected as the surfactant components of the dust suppressant.The surfactant monomers were combined with four inorganic salts and the reverse osmosis moisture absorption of each solution was determined.By combining the reverse osmosis moisture absorption values with the water retention experimental results,CaCl_(2)was identified as the optimal inorganic salt additive for the dust suppressant.Finally,the optimal concentration of each component was obtained using orthogonal experimental design i.e.,AES(0.03%),SDBS(0.05%),and CaCl_(2)(0.4%).The dust suppressant solution formulated using this method had a high moisture absorption capacity and excellent performance.
基金The study was funded by the Ministry of Science and Technology(2018YFE010010002)the National Natural Science Foundation of China(No.41771075 and No.41701061).
文摘Mountain glacier-related hazards occur worldwide in response to increasing glacier instability and human activity intensity in modern glacierized regions.These hazards are characterized by their spatial aggregation and temporal repeatability.Comprehensive knowledge about mountain glacier-related hazards is critical for hazard assessment,mitigation,and prevention in the mountain cryosphere and downstream regions.This article systematically schematizes various mountain glacier-related hazards and analyzes their inherent associations with glacier changes.Besides,the processes,manifestations,and mechanisms of each of the glacier-related hazards are summarized.In the future,more extensive and detailed systematic surveys,for example,considering integrated ground−air−space patterns,should be undertaken for typical glacierized regions to enhance existing knowledge of such hazards.The use of coupled numerical models based on multisource data is challenging but will be essential to improve our understanding of the complex chain of processes involved in thermal−hydrogeomorphic glacier-related hazards in the mountain cryosphere.
基金We thank Esther Posner,PhD,from Edanz Group China(www.liwenbianji.cn/ac)for English language editing on an earlier draft of this manuscript.This work was supported by the 2017 Hunan Provincial Graduate Research Innovation Project of China(No.CX2017B649)the National Natural Science Foundation of China(No.51774134)+2 种基金the Excellent Youth Project of Hunan Provincial Department of Education(No.19B223)the Hunan Provincial Natural Science Foundation of China(No.2019JJ60044)the Hunan Provincial Natural Science Foundation of China(No.2018JJ64028).
文摘Based onmultiphase flowtheory and capillary mechanics,the dimensionless bond number expression of the influence of string grille wire spacing on droplet spreading is derived.Taking a liquid film formed by spreading droplets based on Kelvin correlation,the Young-Laplace equation,and the Hagen-Poiseuille law,an equation for calculating the thickness and height of the liquid film is established with temperature,relative humidity and molar volume of liquid phase as independent variables.According to the theory of string grille filtration and dust removal,a dust removal efficiency calculation model covering the wet string grille wire group is constructed based on the liquid film thickness,height,wire diameter,water film area,and vortex shedding frequency.Finally,a theoretical analysis of the influence of water film area on the efficiency of wet string grille dust removal is carried out based on the spray pressure and the ratio of string grille wire distance to wire diameter.It is found that the effect of spray pressure on water film area and dust removal efficiency is more significant than the string grille wire distance diameter ratio.Moreover,the optimized combination of wet string grille wire distance diameter ratio 0.84,wind speed 3m/s and spray pressure 0.8 MPa is found,which could provide an important reference for engineering applications.
基金Project supported by the National Key R&D Program of China(Grant Nos.2022YFE03070000 and 2022YFE03070003)the National Natural Science Foundation of China(Grant Nos.12375220 and 12075114)+3 种基金the Hunan Provincial Natural Science Foundation(Grant No.2021JJ30569)the Doctoral Initiation Fund Project of University of South China(Grant No.190XQD114)the Hunan Nuclear Fusion International Science and Technology Innovation Cooperation Base(Grant No.2018WK4009)the Hengyang Key Laboratory of Magnetic Confinement Nuclear Fusion Research(Grant No.2018KJ108)。
文摘Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.
基金Projects(52074116,51804113)supported by the National Natural Science Foundation of China。
文摘In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression tests and three-dimensional numerical simulation tests were carried out on hollow granite specimens with different diameters.The bearing capacity of hollow cylindrical specimen is analyzed based on elasticity.The results show that:1)Under low confining pressure,the tensile strain near the hole of the hollow cylindrical specimen is obvious,and the specimen deformation near the hole is significant.At the initial stage of loading,the compressive stress and compressive strain of the specimen are widely distributed.With the progress of loading,the number of microelements subjected to tensile strain gradually increases,and even spreads throughout the specimen;2)Under conventional triaxial compression,the cracking position of hollow cylinder specimens is concentrated in the upper and lower parts,and the final fracture mode is generally compressive shear failure.The final fracture mode of complete specimen is generally tensile fracture.Under high confining pressure,the tensile cracks of the sample are concentrated in the upper and lower parts and are not connected,while the cracks of the upper and lower parts of the intact sample will expand and connect to form a fracture surface;3)In addition,the tensile crack widths of intact and hollow cylindrical specimens under low confining pressure are larger than those under high confining pressure.
基金Project(2018dcyj052) supported by Survey Research Funds of Central South University,ChinaProject(51774321) supported by the National Natural Science Foundation of ChinaProject(2018YFC0604606) supported by the National Key Research and Development Program of China
文摘The mining method optimization in subsea deep gold mines was studied. First, an index system for subsea mining method selection was established based on technical feasibility, security status, economic benefit, and management complexity. Next, an evaluation matrix containing crisp numbers and triangular fuzzy numbers(TFNs) was constructed to describe quantitative and qualitative information simultaneously. Then, a hybrid model combining fuzzy theory and the Tomada de Decis?o Interativa Multicritério(TODIM) method was proposed. Finally, the feasibility of the proposed approach was validated by an illustrative example of selecting the optimal mining method in the Sanshandao Gold Mine(China). The robustness of this approach was demonstrated through a sensitivity analysis. The results show that the proposed hybrid TODIM method is reliable and stable for choosing the optimal mining method in subsea deep gold mines and provides references for mining method optimization in other similar undersea mines.
基金Project(51904104) supported by the National Natural Science Foundation of ChinaProject(2020JJ5174) supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2019M662780) supported by China Postdoctoral Science FoundationProject(19C0746) supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2021-2843) supported by College Student Innovation and Entrepreneurship Training Program of Hunan Province,China。
文摘Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process.In this study,the leaching kinetics of REEs from PG in nitric acid at different temperatures were explored in depth.The experiments show that the maximum leaching recovery for ΣREE was 58.5%,75.9%and 83.4%at 30,60 and 80℃,respectively.Additionally,among La,Ce,Y and Nd,Y had the highest leaching rate.A new shrinking core model(SCM)based on the dissolution reaction of a cylindrical solid particle with interfacial transfer and diffusion across the product layer as the rate-controlling step was deduced and could well fit the leaching process of REEs from PG.The activation energies for the leaching of La,Ce,Y and Nd were determined on the basis of the new cylindrical SCM.In summary,the cylindrical SCM was a more suitable fitting model than the spherical SCM,and the interfacial transfer and diffusion across the product layer were the rate-controlling step for REE leaching from the PG sample.
基金supported by the Fund of University of South China (No.201RGC013 and N0.200XQD052)。
文摘The Co-free Li Ni_(0.5)Mn_(1.5)O_(4)(LNMO)is a promising cathode for lithium-ion batteries owing to its high operating voltage and low costs.However,the synthesis of LNMO is generally time and energy consuming,and its practical application is hindered by the lack of a compatible electrolyte.Herein,a spray pyrolysis-based energy-saving synthesis method as well as a diluted low concentration electrolyte(0.5 M LiPF_(6) in a mixture of fluoroethylene carbonate/dimethyl carbonate/1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether(FEC:DMC:TTE,1:4:5 by volume))are proposed to address these challenges.Owing to the unique features of the precursor prepared by spray pyrolysis,well-crystallized LNMO single-crystal can be obtained within 1 h calcination at 900℃.Besides,the fluorinated interphases derived from the diluted low concentration electrolyte not only mitigate the Mn dissolution and Al corrosion at the cathode side,but also suppresses dendritic Li deposition at the anode side,thus enabling stable cycling of both LNMO and Li metal anode.Thus,30μm Li|LNMO(1.75 m A h cm^(-2))cells achieve a high capacity retention(90.9%)after 168 cycles in the diluted low concentration electrolyte.
基金Projects(51904104,51974117,51804114)supported by the National Natural Science Foundation of ChinaProjects(2018YFC1901601,2018YFC1901602,2018YFC1901605)supported by the National Key Scientific Research Project of China+1 种基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject(18B226)supported by the Excellent Youth Project of Hunan Education Department,China
文摘The massive accumulation of flue gas desulfurization(FGD)gypsum produced in the wet limestone-gypsum flue gas desulfurization process not only encroaches on lands but also causes serious environmental pollution.The preparation ofα-hemihydrate gypsum(α-HH)is an important way to achieve high-value utilization of FGD gypsum.Although the glycerol-water solution approach can be used to produceα-HH from FGD gypsum under mild conditions,the transition is kinetically unfavorable in the mixed solution.Here,an easy pretreatment was used to activate FGD gypsum by calcination and hydration to readily complete the transition.The pretreatment deteriorated the crystallinity of FGD gypsum and caused it to form small irregular flaky crystals,which dramatically increased the specific surface area.Additionally,most of the organics adsorbed onto FGD gypsum surfaces were removed after pretreatment.The poor crystallinity,increased specific surface area,and elimination of organics adsorbed onto crystal surfaces effectively improved the conversion activity of FGD gypsum,thereby promoting dihydrate gypsum(DH)dissolution andα-HH nucleation.Overall,the phase transition of FGD gypsum toα-HH is facilitated.