Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods...Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods.An abnormal radon exhalation behavior was observed,leading to computational fluid dynamics(CFD)-based simulations in which dynamic radon migration in a porous medium and accumulation chamber was considered.Based on the in-situ experimental and numerical simulation results,variations in the radon exhalation rate subject to permeability,flow rate,and insertion depth were quantified and analyzed.The in-situ radon exhalation rates measured using the flow-through method were higher than those measured using the closed-loop method,which could be explained by the negative pressure difference between the inside and outside of the chamber during the measurements.The consistency of the variations in the radon exhalation rate between the experiments and simulations suggests the reliability of CFD-based techniques in obtaining the dynamic evolution of transient radon exhalation rates for diffusion and convection at the porous medium-air interface.The synergistic effects of the three factors(insertion depth,flow rate,and permeability)on the negative pressure difference and measured exhalation rate were quantified,and multivariate regression models were established,with positive correlations in most cases;the exhalation rate decreased with increasing insertion depth at a permeability of 1×10^(−11) m^(2).CFD-based simulations can provide theoretical guidance for improving the flow-through method and thus achieve accurate measurements.展开更多
The impact of the radiation dose produced by^(222)Rn/^(220)Rn and its progeny on human health has garnered increasing interest in the nuclear research field.The establishment of robust,regulatory,and competent^(220)Rn...The impact of the radiation dose produced by^(222)Rn/^(220)Rn and its progeny on human health has garnered increasing interest in the nuclear research field.The establishment of robust,regulatory,and competent^(220)Rn chambers is crucial for accurately measuring radioactivity levels.However,studying the uniformity of the^(220)Rn progeny through experimental methods is challenging,because measuring the concentration of^(220)Rn and its progeny in multiple spatial locations simultaneously and in real time using experimental methods is difficult.Therefore,achieving precise control of the concentration of^(220)Rn and its progeny as well as the reliable sampling of the progeny pose significant challenges.To solve this problem,this study uses computational fluid dynamics to obtain the flow-field data of the^(220)Rn chamber under different wind speeds and progenyreplenishment rates.Qualitative analysis of the concentration distribution of the progeny and quantitative analysis of the progeny concentration and uniformity of the progeny concentration are conducted.The research findings indicated that the progeny concentration level is primarily influenced by wind speed and the progeny-complement rate.Wind speed also plays a crucial role in determining progeny concentration uniformity,whereas the progeny-complement rate has minimal impact on uniformity.To ensure the accuracy of^(220)Rn progeny concentration sampling,we propose a methodology for selecting an appropriate sampling area based on varying progeny concentrations.This study holds immense importance for enhancing the regulation and measurement standards of^(220)Rn and its progeny.展开更多
Hydraulic fracture(HF)formed in rock significantly helps with the development of geo-energy and georesources.The HF formation condition was challenging to understand,with obscure rock micro-cracking mechanisms being a...Hydraulic fracture(HF)formed in rock significantly helps with the development of geo-energy and georesources.The HF formation condition was challenging to understand,with obscure rock micro-cracking mechanisms being a key factor.The rock micro-cracking mechanism under gradient pore water pressure was analyzed on the scale of mineral particles and it was combined with macroscopic boundary conditions of rock hydraulic fracturing,obtaining the propagation criterion of HF in rock based on the rock micro-cracking mechanism which was verified by experiment.The results show that the disturbed skeleton stress induced by the disturbance of gradient pore water pressure in rock equals the pore water pressure difference.The overall range of the defined mechanical shape factor a/b is around 1,but greater than0.5.Under the combined influence of pore water pressure differences and macroscopic boundary stresses on the rock micro-cracking,micro-cracks form among rock mineral particles,micro-cracks connect to form micro-hydraulic fracture surfaces,and micro-hydraulic fracture surfaces open to form macrohydraulic fractures.HF begins to form at the micro-cracking initiation pressure(MCIP),which was tested by keeping the HF tip near the initiation point.The theoretical value of MCIP calculated by the proposed propagation criterion is close to MCIP tested.展开更多
To obtain the precise calculation method for the peak energy density and energy evolution properties of rocks subjected to uniaxial compression(UC)before the post-peak stage,particularly at s0.9sc(s denotes stress and...To obtain the precise calculation method for the peak energy density and energy evolution properties of rocks subjected to uniaxial compression(UC)before the post-peak stage,particularly at s0.9sc(s denotes stress and sc is the peak strength),extensive UC and uniaxial graded cyclical loading-unloading(GCLU)tests were performed on four rock types.In the GCLU tests,four unloading stress levels were designated when σ<0.9σc and six unloading stress levels were designated forσ≥0.9σc.The variations in the elastic energy density(ue),dissipative energy density(ud),and energy storage efficiency(C)for the four rock types under GCLU tests were analyzed.Based on the variation of ue whenσ≥0:9σc,a method for calculating the peak energy density was proposed.The energy evolution in rock under UC condition before the post-peak stage was examined.The relationship between C0.9(C atσ≥0:9σc)and mechanical behavior of rocks was explored,and the damage evolution of rock was analyzed in view of energy.Compared with that of the three existing methods,the accuracy of the calculation method of peak energy density proposed in this study is higher.These findings could provide a theoretical foundation for more accurately revealing the failure behavior of rock from an energy perspective.展开更多
To investigate the failure process and characteristics of D-shaped tunnels under different maximum principal stress directions θ, true-triaxial tests were conducted on cubic sandstone samples with a through D-shaped ...To investigate the failure process and characteristics of D-shaped tunnels under different maximum principal stress directions θ, true-triaxial tests were conducted on cubic sandstone samples with a through D-shaped hole. The test results show that the failure process can be divided into 4 periods:calm, buckling deformation, gradual buckling and exfoliation of rock fragment, and formation of a Vshaped notch. With an increase in θ from 0° to 90°, the size of the rock fragments first decreases and then increases, whereas the fractal dimension of the rock fragments first increases and then decreases. Meanwhile, the failure position at the left side shifts from the sidewall to the corner and finally to the floor, whereas the failure position at the right side moves from the sidewall to the spandrel and finally to the roof, which is consistent with the failure position in underground engineering. In addition, the initial vertical failure stress first decreases and then increases. By comparing the results,the failure severities at different maximum principal stress directions can be ranked from high to low in the following order: 90°>60°>30°>45°>0°.展开更多
The interaction of surrounding rock with a support system in deep underground tunnels has attracted extensive interest from researchers.However,the effect of high axial stress on tunnel stability has not been fully co...The interaction of surrounding rock with a support system in deep underground tunnels has attracted extensive interest from researchers.However,the effect of high axial stress on tunnel stability has not been fully considered.In this study,compression tests with and without confining pressure were conducted on solid specimens and hollow cylinder specimens filled with aluminium,lead,and polymethyl methacrylate(PMMA)to investigate the strength,deformation and failure characteristics of circular roadways subjected to high axial stress.The influence of the three-dimensional stress on the surrounding rock supported with different stiffness was studied.The results indicate that the strength and peak strain of hollow cylinders filled with PMMA are higher than those of hollow cylinders filled with aluminium or lead,indicating that flexible retaining is beneficial for roadway stability.The results obtained in this paper can contribute to better understanding the support failure of a buried roadway subjected to high axial stress and thus to analyzing and evaluating roadway stability.展开更多
This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sands...This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sandstone with water pressure, and revealing the influence of water pressure on the upper limit stress and deformation characteristics of sandstone during post-peak cyclic loading and unloading.Regarding the rock strength, the experimental study confirms that the peak strength σ_(p) and residual strength σ_(r) decrease as water pressure P increases. Especially, the normalized strength parameters σ_(p)/σ_(pk) and σ_(r)/σ_(re) was negatively and linearly correlated with the P/σ_(3). Moreover, the Hoek-Brown strength criterion can be applied to describe the relationship between effective peak strength and effective confining stress. During post-peak cyclic loading and unloading, both the upper limit stress σ_(p(i)) and crack damage threshold stress σ_(cd(i)) of each cycle tend to decrease with the increasing cycle number. A hysteresis loop exists among the loading and unloading stress–strain curves, indicating the unloading deformation modulus E_(unload) is larger than the loading deformation modulus E_(load). Based on experimental results,a post-peak strength prediction model related to water pressure and plastic shear strain is established.展开更多
This work aimed to quantify the physical and mechanical behavior of three-dimensional microstructures in rocks under uniaxial compression.A high-precision in situ XCT(X-ray transmission computed tomography)technology ...This work aimed to quantify the physical and mechanical behavior of three-dimensional microstructures in rocks under uniaxial compression.A high-precision in situ XCT(X-ray transmission computed tomography)technology was applied to investigating the behavior of mineral grains in sandstone:the movement,the rotation deformation,and the principal strains between fault zone and non-fault zone.The results indicate that after unloading,the shear strain of mineral grains is periodic in the radial direction,the strain of mineral grains in the fracture zone is about 30 times of the macro strain of the specimen,which is about 5 times in the non-fracture zone,and the shear strain near the fault zone is larger than the compressive strain,and there is the shear stress concentration feature.展开更多
The authors regret that ‘Houquan Zhang’applies to remove his name and affiliation from the author list because he thought that he didn't make enough great contributions to this paper,just dis-cus:sion about the ...The authors regret that ‘Houquan Zhang’applies to remove his name and affiliation from the author list because he thought that he didn't make enough great contributions to this paper,just dis-cus:sion about the outline for the paper writing and some revision suggestions.The correct author list and affi liations are updated as above.展开更多
The failure characteristics of thermal treated surrounding rocks should be studied to evaluate the stability and safety of deep ground engineering under high-ground-temperature and high-ground-stress conditions.The fa...The failure characteristics of thermal treated surrounding rocks should be studied to evaluate the stability and safety of deep ground engineering under high-ground-temperature and high-ground-stress conditions.The failure process of the inner walls of fine-grained granite specimens at different temperatures(25–600℃)was analyzed using a true-triaxial test system.The failure process,peak intensity,overall morphology(characteristics after failure),rock fragment characteristics,and acoustic emission(AE)characteristics were analyzed.The results showed that for the aforementioned type of granite specimens,the trend of the failure stress conditions changed with respect to the critical temperature(200℃).When the temperature was less than 200℃,the initial failure stress increased,final failure stress increased,and failure severity decreased.When the temperature exceeded 200℃,the initial failure stress decreased,final failure stress decreased,and failure severity increased.When the temperature was 600℃,the initial and final failure stresses of the specimens decreased by 60.93%and 19.77%compared with those at 200℃,respectively.The numerical results obtained with the software RFPA3D-Thermal were used to analyze the effect of temperature on the specimen and reveal the mechanism of the failure process in the deep tunnel surrounding rock.展开更多
Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE...Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE source using refraction path is proposed.Firstly,the control equation of the refraction path is established according to the sensor coordinates and arrival times.Secondly,considering the influence of time-difference-of-arrival(TDOA)errors,the residual of the governing equation is calculated to estimate the equation weight.Thirdly,the refraction points in different directions are solved using Snell’s law and orthogonal constraints.Finally,the source coordinates are iteratively solved by weighted correction terms.The feasibility and accuracy of the proposed method are verified by pencil-lead breaking experiments.The simulation results show that the new method is almost unaffected by the refraction ratio,and always holds more stable and accurate positioning performance than the traditional method under different ratios and scales of TDOA outliers.展开更多
Accurate measurements of the radon exhalation rate help identify and evaluate radon risk regions in the environment.Among these measurement methods,the closed-loop method is frequently used.However,traditional experim...Accurate measurements of the radon exhalation rate help identify and evaluate radon risk regions in the environment.Among these measurement methods,the closed-loop method is frequently used.However,traditional experiments are insufficient or cannot analyze the radon migration and exhalation patterns at the gas–solid interface in the accumulation chamber.The CFD-based technique was applied to predict the radon concentration distribution in a limited space,allowing radon accumulation and exhalation inside the chamber intuitively and visually.In this study,three radon exhalation rates were defined,and two structural ventilation tubes were designed for the chamber.The consistency of the simulated results with the variation in the radon exhalation rate in a previous experiment or analytical solution was verified.The effects of the vent tube structure and flow rate on the radon uniformity in the chamber;permeability,insertion depth,and flow rate on the radon exhalation rate and the effective diffusion coefficient on back-diffusion were investigated.Based on the results,increasing the inser-tion depth from 1 to 5 cm decreased the effective decay constant by 19.55%,whereas the curve-fitted radon exhalation rate decreased(lower than the initial value)as the deviation from the initial value increased by approximately 7%.Increasing the effective diffusion coefficient from 2.77×10^(-7) to 7.77×10^(-6) m^(2) s^(-1) made the deviation expand from 2.14 to 15.96%.The conclusion is that an increased insertion depth helps reduce leakage in the chamber,subject to notable back-diffusion,and that the closed-loop method is reasonably used for porous media with a low effective diffusion coefficient in view of the back-diffusion effect.The CFD-based simulation is expected to provide guidance for the optimization of the radon exhalation rate measurement method and,thus,the accurate measurement of the radon exhalation rate.展开更多
A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sid...A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sidewalls was monitored and recorded in real-time by a micro-video monitoring equipment.The general failure evolution processes of the hole sidewall at different initial depths(500 m,1000 m and 1500 m)during the adjustment of vertical stress were obtained.The results show that the hole sidewall all formed spalling before resulting in strain rockburst,and ultimately forming a V-shaped notch.The far-field principal stress for the initial failure of the tunnel shows a good positive linear correlation with the depth.As the depth increases,the stress required for the initial failure of the tunnels clearly increased,the spalling became more intense;the size and mass of the rock fragments and depth and width of the V-shaped notches increased,and the range of the failure zone extends along the hole sidewall from the local area to the entire area.Therefore,as the depth increases,the support area around the tunnel should be increased accordingly to prevent spalling.展开更多
When roadways are constructed above or adjacent to heavily mined regions, the ground subsidence caused by pillar collapse inflicts severe damage on these roadways. In this study, some surface subsidence events were fi...When roadways are constructed above or adjacent to heavily mined regions, the ground subsidence caused by pillar collapse inflicts severe damage on these roadways. In this study, some surface subsidence events were first reviewed to present roof caving characteristics caused by pillar failure. The bearing characteristic and failure pattern of a single pillar with or without effect of discontinuity were further numerically simulated using distinct element code(3 DEC). It was found that the spalling of pillar or slippage of discontinuity would damage the bearing capacity of pillar during the failure process. The stress at the pillar core could be greater than uniaxial compressive strength of the pillar. However, when a discontinuity runs through a pillar, the slippage of discontinuity would significantly degrade the bearing capacity of the pillar. In pillar support system, if any pillar unexpectedly degrades or loses its bearing capacity, the load transferred from the degraded pillar acts on neighboring pillars, and the shear force also increases at relevant positions. However, the roof cutting and surface subsidence characteristics would perform in different patterns. In some cases, surface subsides slowly;in the worst scenario, shock bump may be induced by pillar and roof collapse.展开更多
To investigate the effects of the maximum principal stress direction(θ)and cross-section shape on the failure characteristics of sandstone,true-triaxial compression experiments were conducted using cubic samples with...To investigate the effects of the maximum principal stress direction(θ)and cross-section shape on the failure characteristics of sandstone,true-triaxial compression experiments were conducted using cubic samples with rectangular,circular,and D-shaped holes.Asθincreases from 0°to 60°in the rectangular hole,the left failure location shifts from the left corner to the left sidewall,the left corner,and then the floor,while the right failure location shifts from the right corner to the right sidewall,right roof corner,and then the roof.Furthermore,the initial failure vertical stress first decreases and then increases.In comparison,the failure severity in the rectangular hole decreases for variousθvalues as 30°>45°>60°>0°.With increasingθ,the fractal dimension(D)of rock slices first increases and then decreases.For the rectangular and D-shaped holes,whenθ=0°,30°,and 90°,D for the rectangular hole is less than that of the D-shaped hole.Whenθ=45°and 60°,D for the rectangular hole is greater than that of the D-shaped hole.Theoretical analysis indicates that the stress concentration at the rectangular and D-shaped corners is greater than the other areas.The failure location rotates with the rotation ofθ,and the failure occurs on the side with a high concentration of compressive stress,while the side with the tensile and compressive stresses remains relatively stable.Therefore,the fundamental reason for the rotation of failure location is the rotation of stress concentration,and the external influencing factor is the rotation ofθ.展开更多
Magmatic volatiles(H_(2)O,F,Cl),especially water,are critical in the formation of porphyry copper deposit,for its significance as a carrier for metals.However,accurately quantifying the water contents of deep ore-form...Magmatic volatiles(H_(2)O,F,Cl),especially water,are critical in the formation of porphyry copper deposit,for its significance as a carrier for metals.However,accurately quantifying the water contents of deep ore-forming magma remain a challenge.Here,we used apatite and forward modelling methods to reconstruct magmatic water evolution histories,with special concern on the control of initial magmatic H_(2)O contents and water saturation threshold to porphyry mineralization.Samples investigated include granitoid rocks and apatite from highly copper-mineralized and barren localities.Generally,our research suggested that both ore-related and ore-barren magma systems are hydrous,the modeled magmatic water contents vary significantly among systems whether mineralized or not,and the major difference lies in the threshold of water saturation(6.0 wt.%for barren,and up to 10.0 wt.%for highly mineralized).Combined with whole rock geochemistry data(high K_(2)O and Sr/Y contents)and modeling result(high modeled water thresholds),we think the ore-related magmas are stored at deeper depth with higher water solubility.In conclusion,we propose that the level of magmatic water saturation plays a crucial role in the formation of porphyry copper systems.Fertile magma has higher water solubility to which deeper storage depth is a critical contributing factor,and can get significantly water enriched upon saturation.展开更多
A diamond film with a size of 6×6×0.5 mm^3 is fabricated by electron-assisted chemical vapor deposition. Raman spectrum analysis, x-ray diffraction and scanning electron microscope images confirm the high pu...A diamond film with a size of 6×6×0.5 mm^3 is fabricated by electron-assisted chemical vapor deposition. Raman spectrum analysis, x-ray diffraction and scanning electron microscope images confirm the high purity and large grain size, which is larger than 300 μm. Its resistivity is higher than 10^12 W· cm. Interlaced-finger electrodes are imprinted onto the diamond film to develop an x-ray detector. Ohmic contact is confirmed by checking the linearity of its current–voltage curve. The dark current is lower than 0.1 n A under an electric field of 30 k V cm^-1. The time response is 220 ps. The sensitivity is about 125 m A W^-1 under a biasing voltage of 100 V.A good linear radiation dose rate is also confirmed. This diamond detector is used to measure x-ray on a Z-pinch, which has a double-layer 'nested tungsten wire array'. The pronounced peaks in the measured waveform clearly characterize the x-ray bursts, which proves the performance of this diamond detector.展开更多
Due to the limited permeability and high methane content of the majority of China’s coal seams,significant coal mining gas disasters frequently occur.There is an urgent need to artificially improve the permeability o...Due to the limited permeability and high methane content of the majority of China’s coal seams,significant coal mining gas disasters frequently occur.There is an urgent need to artificially improve the permeability of coalbed methane(CBM)reservoirs,enhance the recovery efficiency of CBM and prevent mine gas accidents.As a novel coal rock fracture technology,the CO_(2) phase transition jet(CPTJ)has been widely used due to its advantages of safety and high fragmentation efficiency.In this study,to ascertain the effects of the pressure of CPTJ fracturing,the influence of its jet pressure on cracked coal rock was revealed,and its effect on CBM extraction was clarified.In this research,the law of CPTJ pressure decay with time was investigated using experimental and theoretical methods.Based on the results,the displacement and discrete fracture network law of CPTJ fracturing coal rock under different jet pressure conditions were studied using particle flow code numerical simulation.Finally,field experiments were conducted at the Shamushu coal mine to assess the efficiency of CPTJ in enhancing CBM drainage.The results showed that the pressure of the CPTJ decreased exponentially with time and significantly influenced the number and expansion size of cracks that broke coal rock but not their direction of development.CPTJ technology can effectively increase the number of connected microscopic pores and fractures in CBM reservoirs,strongly increase the CBM drainage flow rate by between 5.2 and 9.8 times,and significantly reduce the CBM drainage decay coefficient by between 73.58%and 88.24%.展开更多
One potential solution to the problems of energy storage and conversion is the use of reversible protonic ceramic electrochemical cells(R-PCEC),which are based on the solid oxide fuel cell(SOFC)technology and offer a ...One potential solution to the problems of energy storage and conversion is the use of reversible protonic ceramic electrochemical cells(R-PCEC),which are based on the solid oxide fuel cell(SOFC)technology and offer a flexible route to the generation of renewable fuels.However,the R-PCEC development faces a range of significant challenges,including slow oxygen reaction kinetics,inadequate durability,and poor round-trip efficiency resulting from the inadequacy of an air electrode.To address these issues,we report novel B-sites doped Pr_(0.5)Ba_(0.5)Co_(0.7)Fe_(0.3)O_(3−δ)(PBCF)with varying amounts of Sn as the air electrode for R-PCEC to further enhance electrochemical performance at lower temperatures.At 600℃,R-PCEC with an air electrode consisting of Pr_(0.5)Ba_(0.5)Co_(0.7)Fe_(0.25)Sn_(0.05)O_(3+δ)has achieved peak power density of 1.12 W∙cm^(−2) in the fuel cell mode and current density of 1.79 A∙cm^(−2) in the electrolysis mode at a voltage of 1.3 V.Moreover,R-PCECs have shown good stability in the electrolysis mode of 100 h.This study presents a practical method for developing durable high-performance air electrodes for R-PCECs.展开更多
A La_(0.5)Ba_(0.5)MnO_(3-δ) oxide was prepared using the sol-gel technique.Instead of a pure phase,La_(0.5)Ba_(0.5)MnO_(3-δ) was discovered to be a combination of La_(0.7)Ba_(0.3)MnO_(3-δ) and BaMnO_(3).The in-situ...A La_(0.5)Ba_(0.5)MnO_(3-δ) oxide was prepared using the sol-gel technique.Instead of a pure phase,La_(0.5)Ba_(0.5)MnO_(3-δ) was discovered to be a combination of La_(0.7)Ba_(0.3)MnO_(3-δ) and BaMnO_(3).The in-situ production of La_(0.7)Ba_(0.3)MnO_(3-δ)+BaMnO_(3) nanocomposites enhanced the oxygen vacancy(Vo)formation compared to single-phase La_(0.7)Ba_(0.3)MnO_(3-δ) or BaMnO_(3),providing potential benefits as a cathode for fuel cells.Subsequently,La_(0.7)Ba_(0.3)MnO_(3-δ)+BaMnO_(3) nanocomposites were utilized as the cathode for proton-conducting solid oxide fuel cells(H-SOFCs),which significantly improved cell performance.At 700 C,H-SOFC with a La_(0.7)Ba_(0.3)MnO_(3-δ)+BaMnO_(3) nanocomposite cathode achieved the highest power density(1504 mW·cm^(-2))yet recorded for H-SOFCs with manganate cathodes.This performance was much greater than that of single-phase La_(0.7)Ba_(0.3)MnO_(3-δ)or BaMnO_(3) cathode cells.In addition,the cell demonstrated excellent working stability.First-principles calculations indicated that the La_(0.7)Ba_(0.3)MnO_(3-δ)/BaMnO_(3) interface was crucial for the enhanced cathode performance.The oxygen reduction reaction(ORR)free energy barrier was significantly lower at the La_(0.7)Ba_(0.3)MnO_(3-δ)/BaMnO_(3) interface than that at the La_(0.7)Ba_(0.3)MnO_(3-δ) or BaMnO_(3) surfaces,which explained the origin of high performance and gave a guide for the construction of novel cathodes for H-SOFCs.展开更多
基金National Natural Science Foundation of China(No.11575080)Hunan Provincial Natural Science Foundation of China(No.2022JJ30482)Hunan Provincial Innovation Foundation for Postgraduate(No.QL20220206).
文摘Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods.An abnormal radon exhalation behavior was observed,leading to computational fluid dynamics(CFD)-based simulations in which dynamic radon migration in a porous medium and accumulation chamber was considered.Based on the in-situ experimental and numerical simulation results,variations in the radon exhalation rate subject to permeability,flow rate,and insertion depth were quantified and analyzed.The in-situ radon exhalation rates measured using the flow-through method were higher than those measured using the closed-loop method,which could be explained by the negative pressure difference between the inside and outside of the chamber during the measurements.The consistency of the variations in the radon exhalation rate between the experiments and simulations suggests the reliability of CFD-based techniques in obtaining the dynamic evolution of transient radon exhalation rates for diffusion and convection at the porous medium-air interface.The synergistic effects of the three factors(insertion depth,flow rate,and permeability)on the negative pressure difference and measured exhalation rate were quantified,and multivariate regression models were established,with positive correlations in most cases;the exhalation rate decreased with increasing insertion depth at a permeability of 1×10^(−11) m^(2).CFD-based simulations can provide theoretical guidance for improving the flow-through method and thus achieve accurate measurements.
基金supported by the National Natural Science Foundation of China(Nos.12375310,12175102,and 118750356)Youth Talent Foundation of Hunan Province of China(2022TJQ16)Graduate Research and Innovation Projects of Hunan Province(CX20230964)。
文摘The impact of the radiation dose produced by^(222)Rn/^(220)Rn and its progeny on human health has garnered increasing interest in the nuclear research field.The establishment of robust,regulatory,and competent^(220)Rn chambers is crucial for accurately measuring radioactivity levels.However,studying the uniformity of the^(220)Rn progeny through experimental methods is challenging,because measuring the concentration of^(220)Rn and its progeny in multiple spatial locations simultaneously and in real time using experimental methods is difficult.Therefore,achieving precise control of the concentration of^(220)Rn and its progeny as well as the reliable sampling of the progeny pose significant challenges.To solve this problem,this study uses computational fluid dynamics to obtain the flow-field data of the^(220)Rn chamber under different wind speeds and progenyreplenishment rates.Qualitative analysis of the concentration distribution of the progeny and quantitative analysis of the progeny concentration and uniformity of the progeny concentration are conducted.The research findings indicated that the progeny concentration level is primarily influenced by wind speed and the progeny-complement rate.Wind speed also plays a crucial role in determining progeny concentration uniformity,whereas the progeny-complement rate has minimal impact on uniformity.To ensure the accuracy of^(220)Rn progeny concentration sampling,we propose a methodology for selecting an appropriate sampling area based on varying progeny concentrations.This study holds immense importance for enhancing the regulation and measurement standards of^(220)Rn and its progeny.
基金supported by the National Key Research and Development Program of China (No.2021YFC2902102)the National Natural Science Foundation of China (Nos.52374103 and 52274013)。
文摘Hydraulic fracture(HF)formed in rock significantly helps with the development of geo-energy and georesources.The HF formation condition was challenging to understand,with obscure rock micro-cracking mechanisms being a key factor.The rock micro-cracking mechanism under gradient pore water pressure was analyzed on the scale of mineral particles and it was combined with macroscopic boundary conditions of rock hydraulic fracturing,obtaining the propagation criterion of HF in rock based on the rock micro-cracking mechanism which was verified by experiment.The results show that the disturbed skeleton stress induced by the disturbance of gradient pore water pressure in rock equals the pore water pressure difference.The overall range of the defined mechanical shape factor a/b is around 1,but greater than0.5.Under the combined influence of pore water pressure differences and macroscopic boundary stresses on the rock micro-cracking,micro-cracks form among rock mineral particles,micro-cracks connect to form micro-hydraulic fracture surfaces,and micro-hydraulic fracture surfaces open to form macrohydraulic fractures.HF begins to form at the micro-cracking initiation pressure(MCIP),which was tested by keeping the HF tip near the initiation point.The theoretical value of MCIP calculated by the proposed propagation criterion is close to MCIP tested.
基金the National Natural Science Foundation of China(Grant Nos.52104133 and 52304227)the Postdoctoral Foundation of Henan Province(Grant No.HN2022015)are appreciated.
文摘To obtain the precise calculation method for the peak energy density and energy evolution properties of rocks subjected to uniaxial compression(UC)before the post-peak stage,particularly at s0.9sc(s denotes stress and sc is the peak strength),extensive UC and uniaxial graded cyclical loading-unloading(GCLU)tests were performed on four rock types.In the GCLU tests,four unloading stress levels were designated when σ<0.9σc and six unloading stress levels were designated forσ≥0.9σc.The variations in the elastic energy density(ue),dissipative energy density(ud),and energy storage efficiency(C)for the four rock types under GCLU tests were analyzed.Based on the variation of ue whenσ≥0:9σc,a method for calculating the peak energy density was proposed.The energy evolution in rock under UC condition before the post-peak stage was examined.The relationship between C0.9(C atσ≥0:9σc)and mechanical behavior of rocks was explored,and the damage evolution of rock was analyzed in view of energy.Compared with that of the three existing methods,the accuracy of the calculation method of peak energy density proposed in this study is higher.These findings could provide a theoretical foundation for more accurately revealing the failure behavior of rock from an energy perspective.
基金This work was supported by the National Natural Science Foun-dation of China(Nos.52174098,41630642,and 51904335).
文摘To investigate the failure process and characteristics of D-shaped tunnels under different maximum principal stress directions θ, true-triaxial tests were conducted on cubic sandstone samples with a through D-shaped hole. The test results show that the failure process can be divided into 4 periods:calm, buckling deformation, gradual buckling and exfoliation of rock fragment, and formation of a Vshaped notch. With an increase in θ from 0° to 90°, the size of the rock fragments first decreases and then increases, whereas the fractal dimension of the rock fragments first increases and then decreases. Meanwhile, the failure position at the left side shifts from the sidewall to the corner and finally to the floor, whereas the failure position at the right side moves from the sidewall to the spandrel and finally to the roof, which is consistent with the failure position in underground engineering. In addition, the initial vertical failure stress first decreases and then increases. By comparing the results,the failure severities at different maximum principal stress directions can be ranked from high to low in the following order: 90°>60°>30°>45°>0°.
基金Projects(11772357,51474103,51504092)supported by the National Natural Science Foundation of ChinaProject(2016YFC0600706)supported by the National Key Research and Development Program of China
文摘The interaction of surrounding rock with a support system in deep underground tunnels has attracted extensive interest from researchers.However,the effect of high axial stress on tunnel stability has not been fully considered.In this study,compression tests with and without confining pressure were conducted on solid specimens and hollow cylinder specimens filled with aluminium,lead,and polymethyl methacrylate(PMMA)to investigate the strength,deformation and failure characteristics of circular roadways subjected to high axial stress.The influence of the three-dimensional stress on the surrounding rock supported with different stiffness was studied.The results indicate that the strength and peak strain of hollow cylinders filled with PMMA are higher than those of hollow cylinders filled with aluminium or lead,indicating that flexible retaining is beneficial for roadway stability.The results obtained in this paper can contribute to better understanding the support failure of a buried roadway subjected to high axial stress and thus to analyzing and evaluating roadway stability.
基金supported by the National Natural Science Foundation of China(Nos.52274118 and 52274145)the Construction Project of Chenzhou National Sustainable Development Agenda Innovation Demonstration Zone(No.2021sfQ18).
文摘This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sandstone with water pressure, and revealing the influence of water pressure on the upper limit stress and deformation characteristics of sandstone during post-peak cyclic loading and unloading.Regarding the rock strength, the experimental study confirms that the peak strength σ_(p) and residual strength σ_(r) decrease as water pressure P increases. Especially, the normalized strength parameters σ_(p)/σ_(pk) and σ_(r)/σ_(re) was negatively and linearly correlated with the P/σ_(3). Moreover, the Hoek-Brown strength criterion can be applied to describe the relationship between effective peak strength and effective confining stress. During post-peak cyclic loading and unloading, both the upper limit stress σ_(p(i)) and crack damage threshold stress σ_(cd(i)) of each cycle tend to decrease with the increasing cycle number. A hysteresis loop exists among the loading and unloading stress–strain curves, indicating the unloading deformation modulus E_(unload) is larger than the loading deformation modulus E_(load). Based on experimental results,a post-peak strength prediction model related to water pressure and plastic shear strain is established.
基金financially supported in part by the National Key Research and Development Program of China(No.2017YFC0602901)。
文摘This work aimed to quantify the physical and mechanical behavior of three-dimensional microstructures in rocks under uniaxial compression.A high-precision in situ XCT(X-ray transmission computed tomography)technology was applied to investigating the behavior of mineral grains in sandstone:the movement,the rotation deformation,and the principal strains between fault zone and non-fault zone.The results indicate that after unloading,the shear strain of mineral grains is periodic in the radial direction,the strain of mineral grains in the fracture zone is about 30 times of the macro strain of the specimen,which is about 5 times in the non-fracture zone,and the shear strain near the fault zone is larger than the compressive strain,and there is the shear stress concentration feature.
文摘The authors regret that ‘Houquan Zhang’applies to remove his name and affiliation from the author list because he thought that he didn't make enough great contributions to this paper,just dis-cus:sion about the outline for the paper writing and some revision suggestions.The correct author list and affi liations are updated as above.
基金Project(52174098)supported by the National Natural Science Foundation of ChinaProject(2022JJ20063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2023CXQD011)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The failure characteristics of thermal treated surrounding rocks should be studied to evaluate the stability and safety of deep ground engineering under high-ground-temperature and high-ground-stress conditions.The failure process of the inner walls of fine-grained granite specimens at different temperatures(25–600℃)was analyzed using a true-triaxial test system.The failure process,peak intensity,overall morphology(characteristics after failure),rock fragment characteristics,and acoustic emission(AE)characteristics were analyzed.The results showed that for the aforementioned type of granite specimens,the trend of the failure stress conditions changed with respect to the critical temperature(200℃).When the temperature was less than 200℃,the initial failure stress increased,final failure stress increased,and failure severity decreased.When the temperature exceeded 200℃,the initial failure stress decreased,final failure stress decreased,and failure severity increased.When the temperature was 600℃,the initial and final failure stresses of the specimens decreased by 60.93%and 19.77%compared with those at 200℃,respectively.The numerical results obtained with the software RFPA3D-Thermal were used to analyze the effect of temperature on the specimen and reveal the mechanism of the failure process in the deep tunnel surrounding rock.
基金the National Natural Science Foundation of China (Nos.52304123 and 52104077)the Postdoctoral Fellowship Program of CPSF (No.GZB20230914)+1 种基金the China Postdoctoral Science Foundation (No.2023M730412)the National Key Research and Development Program for Young Scientists (No.2021YFC2900400)。
文摘Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE source using refraction path is proposed.Firstly,the control equation of the refraction path is established according to the sensor coordinates and arrival times.Secondly,considering the influence of time-difference-of-arrival(TDOA)errors,the residual of the governing equation is calculated to estimate the equation weight.Thirdly,the refraction points in different directions are solved using Snell’s law and orthogonal constraints.Finally,the source coordinates are iteratively solved by weighted correction terms.The feasibility and accuracy of the proposed method are verified by pencil-lead breaking experiments.The simulation results show that the new method is almost unaffected by the refraction ratio,and always holds more stable and accurate positioning performance than the traditional method under different ratios and scales of TDOA outliers.
基金This work was supported by the National Natural Science Foundation of China(No.11575080)the National Natural Science Foundation of Hunan Province,China(No.2022JJ30482)the Hunan Provincial Innovation Foundation for Postgraduates(No.QL20220206).
文摘Accurate measurements of the radon exhalation rate help identify and evaluate radon risk regions in the environment.Among these measurement methods,the closed-loop method is frequently used.However,traditional experiments are insufficient or cannot analyze the radon migration and exhalation patterns at the gas–solid interface in the accumulation chamber.The CFD-based technique was applied to predict the radon concentration distribution in a limited space,allowing radon accumulation and exhalation inside the chamber intuitively and visually.In this study,three radon exhalation rates were defined,and two structural ventilation tubes were designed for the chamber.The consistency of the simulated results with the variation in the radon exhalation rate in a previous experiment or analytical solution was verified.The effects of the vent tube structure and flow rate on the radon uniformity in the chamber;permeability,insertion depth,and flow rate on the radon exhalation rate and the effective diffusion coefficient on back-diffusion were investigated.Based on the results,increasing the inser-tion depth from 1 to 5 cm decreased the effective decay constant by 19.55%,whereas the curve-fitted radon exhalation rate decreased(lower than the initial value)as the deviation from the initial value increased by approximately 7%.Increasing the effective diffusion coefficient from 2.77×10^(-7) to 7.77×10^(-6) m^(2) s^(-1) made the deviation expand from 2.14 to 15.96%.The conclusion is that an increased insertion depth helps reduce leakage in the chamber,subject to notable back-diffusion,and that the closed-loop method is reasonably used for porous media with a low effective diffusion coefficient in view of the back-diffusion effect.The CFD-based simulation is expected to provide guidance for the optimization of the radon exhalation rate measurement method and,thus,the accurate measurement of the radon exhalation rate.
基金Projects(41877272,41472269)supported by the National Natural Science Foundation of ChinaProject(2017zzts167)supported by the Fundamental Research Funds for the Central Universities,China。
文摘A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sidewalls was monitored and recorded in real-time by a micro-video monitoring equipment.The general failure evolution processes of the hole sidewall at different initial depths(500 m,1000 m and 1500 m)during the adjustment of vertical stress were obtained.The results show that the hole sidewall all formed spalling before resulting in strain rockburst,and ultimately forming a V-shaped notch.The far-field principal stress for the initial failure of the tunnel shows a good positive linear correlation with the depth.As the depth increases,the stress required for the initial failure of the tunnels clearly increased,the spalling became more intense;the size and mass of the rock fragments and depth and width of the V-shaped notches increased,and the range of the failure zone extends along the hole sidewall from the local area to the entire area.Therefore,as the depth increases,the support area around the tunnel should be increased accordingly to prevent spalling.
基金Projects(51838001, 51878070, 51904101) supported by the National Natural Science Foundation of ChinaProject(2019SK2171) supported by the Key Research and Development Program of Hunan Province, ChinaProject(kfj190402) supported by the Open Fund of Engineering Research Center of Catastrophic Prophylaxis and Treatment of Road & Traffic Safety of Ministry of Education(Changsha University of Science & Technology), China。
文摘When roadways are constructed above or adjacent to heavily mined regions, the ground subsidence caused by pillar collapse inflicts severe damage on these roadways. In this study, some surface subsidence events were first reviewed to present roof caving characteristics caused by pillar failure. The bearing characteristic and failure pattern of a single pillar with or without effect of discontinuity were further numerically simulated using distinct element code(3 DEC). It was found that the spalling of pillar or slippage of discontinuity would damage the bearing capacity of pillar during the failure process. The stress at the pillar core could be greater than uniaxial compressive strength of the pillar. However, when a discontinuity runs through a pillar, the slippage of discontinuity would significantly degrade the bearing capacity of the pillar. In pillar support system, if any pillar unexpectedly degrades or loses its bearing capacity, the load transferred from the degraded pillar acts on neighboring pillars, and the shear force also increases at relevant positions. However, the roof cutting and surface subsidence characteristics would perform in different patterns. In some cases, surface subsides slowly;in the worst scenario, shock bump may be induced by pillar and roof collapse.
基金supported by the National Natural Science Foundation of China (Grant Nos.52304227 and 52104133)Scientific and Technological Research Platform for Disaster Prevention and Control of Deep Coal Mining (Anhui University of Science and Technology) (Grant No.DPDCM2208).
文摘To investigate the effects of the maximum principal stress direction(θ)and cross-section shape on the failure characteristics of sandstone,true-triaxial compression experiments were conducted using cubic samples with rectangular,circular,and D-shaped holes.Asθincreases from 0°to 60°in the rectangular hole,the left failure location shifts from the left corner to the left sidewall,the left corner,and then the floor,while the right failure location shifts from the right corner to the right sidewall,right roof corner,and then the roof.Furthermore,the initial failure vertical stress first decreases and then increases.In comparison,the failure severity in the rectangular hole decreases for variousθvalues as 30°>45°>60°>0°.With increasingθ,the fractal dimension(D)of rock slices first increases and then decreases.For the rectangular and D-shaped holes,whenθ=0°,30°,and 90°,D for the rectangular hole is less than that of the D-shaped hole.Whenθ=45°and 60°,D for the rectangular hole is greater than that of the D-shaped hole.Theoretical analysis indicates that the stress concentration at the rectangular and D-shaped corners is greater than the other areas.The failure location rotates with the rotation ofθ,and the failure occurs on the side with a high concentration of compressive stress,while the side with the tensile and compressive stresses remains relatively stable.Therefore,the fundamental reason for the rotation of failure location is the rotation of stress concentration,and the external influencing factor is the rotation ofθ.
基金supported by the National Key R&D Program of China(2022YFF0800902)National Natural Science Foundation of China(42225204,42121002)+3 种基金Fundamental Research Funds for the Central Universities(grant numbers 26520230012-9-2023-202)the 111 project(B18048)supported by funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(grant agreement No.864923).
文摘Magmatic volatiles(H_(2)O,F,Cl),especially water,are critical in the formation of porphyry copper deposit,for its significance as a carrier for metals.However,accurately quantifying the water contents of deep ore-forming magma remain a challenge.Here,we used apatite and forward modelling methods to reconstruct magmatic water evolution histories,with special concern on the control of initial magmatic H_(2)O contents and water saturation threshold to porphyry mineralization.Samples investigated include granitoid rocks and apatite from highly copper-mineralized and barren localities.Generally,our research suggested that both ore-related and ore-barren magma systems are hydrous,the modeled magmatic water contents vary significantly among systems whether mineralized or not,and the major difference lies in the threshold of water saturation(6.0 wt.%for barren,and up to 10.0 wt.%for highly mineralized).Combined with whole rock geochemistry data(high K_(2)O and Sr/Y contents)and modeling result(high modeled water thresholds),we think the ore-related magmas are stored at deeper depth with higher water solubility.In conclusion,we propose that the level of magmatic water saturation plays a crucial role in the formation of porphyry copper systems.Fertile magma has higher water solubility to which deeper storage depth is a critical contributing factor,and can get significantly water enriched upon saturation.
基金supported by the National Key R&D Program of China(Grant No.2017YFE0301300)the Hunan Provincial Innovation Foundation for Postgraduate(Grant No.CX2018B588)。
文摘A diamond film with a size of 6×6×0.5 mm^3 is fabricated by electron-assisted chemical vapor deposition. Raman spectrum analysis, x-ray diffraction and scanning electron microscope images confirm the high purity and large grain size, which is larger than 300 μm. Its resistivity is higher than 10^12 W· cm. Interlaced-finger electrodes are imprinted onto the diamond film to develop an x-ray detector. Ohmic contact is confirmed by checking the linearity of its current–voltage curve. The dark current is lower than 0.1 n A under an electric field of 30 k V cm^-1. The time response is 220 ps. The sensitivity is about 125 m A W^-1 under a biasing voltage of 100 V.A good linear radiation dose rate is also confirmed. This diamond detector is used to measure x-ray on a Z-pinch, which has a double-layer 'nested tungsten wire array'. The pronounced peaks in the measured waveform clearly characterize the x-ray bursts, which proves the performance of this diamond detector.
基金the National Natural Science Foundation of China(Grant Nos.52204095,51974163,52274127 and 52174174)the National Key Research and Development Program of China(No.2021YFC2902104)+3 种基金the Natural Science Foundation of Hunan Province,China(No.2023JJ30509)the Key Laboratory of Safety and High-efficiency Coal Mining of Ministry of Education(No.JYBSYS2020204)the Special Program for Basic Research of Key Scientific Research Projects of Colleges and Universities in Henan Province of China(No.21ZX004)the Innovative Scientific Research Team of Henan Polytechnic University in China(No.T2022-1).
文摘Due to the limited permeability and high methane content of the majority of China’s coal seams,significant coal mining gas disasters frequently occur.There is an urgent need to artificially improve the permeability of coalbed methane(CBM)reservoirs,enhance the recovery efficiency of CBM and prevent mine gas accidents.As a novel coal rock fracture technology,the CO_(2) phase transition jet(CPTJ)has been widely used due to its advantages of safety and high fragmentation efficiency.In this study,to ascertain the effects of the pressure of CPTJ fracturing,the influence of its jet pressure on cracked coal rock was revealed,and its effect on CBM extraction was clarified.In this research,the law of CPTJ pressure decay with time was investigated using experimental and theoretical methods.Based on the results,the displacement and discrete fracture network law of CPTJ fracturing coal rock under different jet pressure conditions were studied using particle flow code numerical simulation.Finally,field experiments were conducted at the Shamushu coal mine to assess the efficiency of CPTJ in enhancing CBM drainage.The results showed that the pressure of the CPTJ decreased exponentially with time and significantly influenced the number and expansion size of cracks that broke coal rock but not their direction of development.CPTJ technology can effectively increase the number of connected microscopic pores and fractures in CBM reservoirs,strongly increase the CBM drainage flow rate by between 5.2 and 9.8 times,and significantly reduce the CBM drainage decay coefficient by between 73.58%and 88.24%.
基金supported by the National Natural Science Foundation of China(No.11875164)Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(No.18KJA430017)U.S.National Science Foundation(No.1832809).
文摘One potential solution to the problems of energy storage and conversion is the use of reversible protonic ceramic electrochemical cells(R-PCEC),which are based on the solid oxide fuel cell(SOFC)technology and offer a flexible route to the generation of renewable fuels.However,the R-PCEC development faces a range of significant challenges,including slow oxygen reaction kinetics,inadequate durability,and poor round-trip efficiency resulting from the inadequacy of an air electrode.To address these issues,we report novel B-sites doped Pr_(0.5)Ba_(0.5)Co_(0.7)Fe_(0.3)O_(3−δ)(PBCF)with varying amounts of Sn as the air electrode for R-PCEC to further enhance electrochemical performance at lower temperatures.At 600℃,R-PCEC with an air electrode consisting of Pr_(0.5)Ba_(0.5)Co_(0.7)Fe_(0.25)Sn_(0.05)O_(3+δ)has achieved peak power density of 1.12 W∙cm^(−2) in the fuel cell mode and current density of 1.79 A∙cm^(−2) in the electrolysis mode at a voltage of 1.3 V.Moreover,R-PCECs have shown good stability in the electrolysis mode of 100 h.This study presents a practical method for developing durable high-performance air electrodes for R-PCECs.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272216 and 51972183)the Hundred Youth Talents Program of Hunan,and the Startup Funding for Talents at University of South Chinathe support from the Hunan University Student Innovation and Entrepreneurship Training Program(Grant No.S202210555343)。
文摘A La_(0.5)Ba_(0.5)MnO_(3-δ) oxide was prepared using the sol-gel technique.Instead of a pure phase,La_(0.5)Ba_(0.5)MnO_(3-δ) was discovered to be a combination of La_(0.7)Ba_(0.3)MnO_(3-δ) and BaMnO_(3).The in-situ production of La_(0.7)Ba_(0.3)MnO_(3-δ)+BaMnO_(3) nanocomposites enhanced the oxygen vacancy(Vo)formation compared to single-phase La_(0.7)Ba_(0.3)MnO_(3-δ) or BaMnO_(3),providing potential benefits as a cathode for fuel cells.Subsequently,La_(0.7)Ba_(0.3)MnO_(3-δ)+BaMnO_(3) nanocomposites were utilized as the cathode for proton-conducting solid oxide fuel cells(H-SOFCs),which significantly improved cell performance.At 700 C,H-SOFC with a La_(0.7)Ba_(0.3)MnO_(3-δ)+BaMnO_(3) nanocomposite cathode achieved the highest power density(1504 mW·cm^(-2))yet recorded for H-SOFCs with manganate cathodes.This performance was much greater than that of single-phase La_(0.7)Ba_(0.3)MnO_(3-δ)or BaMnO_(3) cathode cells.In addition,the cell demonstrated excellent working stability.First-principles calculations indicated that the La_(0.7)Ba_(0.3)MnO_(3-δ)/BaMnO_(3) interface was crucial for the enhanced cathode performance.The oxygen reduction reaction(ORR)free energy barrier was significantly lower at the La_(0.7)Ba_(0.3)MnO_(3-δ)/BaMnO_(3) interface than that at the La_(0.7)Ba_(0.3)MnO_(3-δ) or BaMnO_(3) surfaces,which explained the origin of high performance and gave a guide for the construction of novel cathodes for H-SOFCs.