期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Deep Spectrum Prediction in High Frequency Communication Based on Temporal-Spectral Residual Network 被引量:10
1
作者 Ling Yu Jin Chen +2 位作者 Yuming Zhang Huaji Zhou Jiachen Sun 《China Communications》 SCIE CSCD 2018年第9期25-34,共10页
High frequency(HF) communication is widely spread due to some merits like easy deployment and wide communication coverage. Spectrum prediction is a promising technique to facilitate the working frequency selection and... High frequency(HF) communication is widely spread due to some merits like easy deployment and wide communication coverage. Spectrum prediction is a promising technique to facilitate the working frequency selection and enhance the function of automatic link establishment. Most of the existing spectrum prediction algorithms focus on predicting spectrum values in a slot-by-slot manner and therefore are lack of timeliness. Deep learning based spectrum prediction is developed in this paper by simultaneously predicting multi-slot ahead states of multiple spectrum points within a period of time. Specifically, we first employ supervised learning and construct samples depending on longterm and short-term HF spectrum data. Then, advanced residual units are introduced to build multiple residual network modules to respectively capture characteristics in these data with diverse time scales. Further, convolution neural network fuses the outputs of residual network modules above for temporal-spectral prediction, which is combined with residual network modules to construct the deep temporal-spectral residual network. Experiments have demonstrated that the approach proposed in this paper has a significant advantage over the benchmark schemes. 展开更多
关键词 HF communication deep learning spectrum prediction temporal-spectral residual network
在线阅读 下载PDF
Primary User Adversarial Attacks on Deep Learning-Based Spectrum Sensing and the Defense Method 被引量:4
2
作者 Shilian Zheng Linhui Ye +5 位作者 Xuanye Wang Jinyin Chen Huaji Zhou Caiyi Lou Zhijin Zhao Xiaoniu Yang 《China Communications》 SCIE CSCD 2021年第12期94-107,共14页
The spectrum sensing model based on deep learning has achieved satisfying detection per-formence,but its robustness has not been verified.In this paper,we propose primary user adversarial attack(PUAA)to verify the rob... The spectrum sensing model based on deep learning has achieved satisfying detection per-formence,but its robustness has not been verified.In this paper,we propose primary user adversarial attack(PUAA)to verify the robustness of the deep learning based spectrum sensing model.PUAA adds a care-fully manufactured perturbation to the benign primary user signal,which greatly reduces the probability of detection of the spectrum sensing model.We design three PUAA methods in black box scenario.In or-der to defend against PUAA,we propose a defense method based on autoencoder named DeepFilter.We apply the long short-term memory network and the convolutional neural network together to DeepFilter,so that it can extract the temporal and local features of the input signal at the same time to achieve effective defense.Extensive experiments are conducted to eval-uate the attack effect of the designed PUAA method and the defense effect of DeepFilter.Results show that the three PUAA methods designed can greatly reduce the probability of detection of the deep learning-based spectrum sensing model.In addition,the experimen-tal results of the defense effect of DeepFilter show that DeepFilter can effectively defend against PUAA with-out affecting the detection performance of the model. 展开更多
关键词 spectrum sensing cognitive radio deep learning adversarial attack autoencoder DEFENSE
在线阅读 下载PDF
Open World Recognition of Communication Jamming Signals 被引量:3
3
作者 Yan Tang Zhijin Zhao +4 位作者 Jie Chen Shilian Zheng Xueyi Ye Caiyi Lou Xiaoniu Yang 《China Communications》 SCIE CSCD 2023年第6期199-214,共16页
To improve the recognition ability of communication jamming signals,Siamese Neural Network-based Open World Recognition(SNNOWR)is proposed.The algorithm can recognize known jamming classes,detect new(unknown)jamming c... To improve the recognition ability of communication jamming signals,Siamese Neural Network-based Open World Recognition(SNNOWR)is proposed.The algorithm can recognize known jamming classes,detect new(unknown)jamming classes,and unsupervised cluseter new classes.The network of SNN-OWR is trained supervised with paired input data consisting of two samples from a known dataset.On the one hand,the network is required to have the ability to distinguish whether two samples are from the same class.On the other hand,the latent distribution of known class is forced to approach their own unique Gaussian distribution,which is prepared for the subsequent open set testing.During the test,the unknown class detection process based on Gaussian probability density function threshold is designed,and an unsupervised clustering algorithm of the unknown jamming is realized by using the prior knowledge of known classes.The simulation results show that when the jamming-to-noise ratio is more than 0d B,the accuracy of SNN-OWR algorithm for known jamming classes recognition,unknown jamming detection and unsupervised clustering of unknown jamming is about 95%.This indicates that the SNN-OWR algorithm can make the effect of the recognition of unknown jamming be almost the same as that of known jamming. 展开更多
关键词 communication jamming signals Siamese Neural Network Open World Recognition unsupervised clustering of new jamming type Gaussian probability density function
在线阅读 下载PDF
Research on the Construction of a Novel Cyberspace Security Ecosystem 被引量:3
4
作者 Xiao-Niu Yang Wei Wang +2 位作者 Xiao-Feng Xu Guo-Rong Pang Chun-Lei Zhang 《Engineering》 2018年第1期47-52,共6页
Given the challenges facing the cyberspace of the nation, this paper presents the tripartite theory of cyberspace, based on the status quo of cyberspace. Corresponding strategies and a research architecture are propos... Given the challenges facing the cyberspace of the nation, this paper presents the tripartite theory of cyberspace, based on the status quo of cyberspace. Corresponding strategies and a research architecture are proposed for common public networks (C space), secure classified networks (S space), and key infras- tructure networks (K space), based on their individual characteristics. The features and security require- ments of these networks are then discussed. Taking C space as an example, we introduce the SMCRC (which stands for "situation awareness, monitoring and management, cooperative defense, response and recovery, and countermeasures and traceback") loop for constructing a cyberspace security ecosys- tem. Following a discussion on its characteristics and information exchange, our analysis focuses on the critical technologies of the SMCRC loop. To obtain more insight into national cyberspace security, special attention should be paid to global sensing and precise mapping, continuous detection and active manage- ment, cross-domain cooperation and systematic defense, autonomous response and rapid processing, and accurate traceback and countermeasure deterrence. 展开更多
关键词 CYBERSPACE SECURITY ECOSYSTEM SMCRC LOOP TRIPARTITE THEORY of CYBERSPACE
在线阅读 下载PDF
A Graph-Based Semi-Supervised Approach for Few-Shot Class-Incremental Modulation Classification
5
作者 Zhou Xiaoyu Qi Peihan +3 位作者 Liu Qi Ding Yuanlei Zheng Shilian Li Zan 《China Communications》 SCIE CSCD 2024年第11期88-103,共16页
With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recogni... With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recognition model is pre-trained with fixed classes,the pre-trained model tends to predict incorrect results when identifying incremental classes.Moreover,the incremental classes are usually emergent without label information or only a few labeled samples of incremental classes can be obtained.In this context,we propose a graphbased semi-supervised approach to address the fewshot classes-incremental(FSCI)modulation classification problem.Our proposed method is a twostage learning method,specifically,a warm-up model is trained for classifying old classes and incremental classes,where the unlabeled samples of incremental classes are uniformly labeled with the same label to alleviate the damage of the class imbalance problem.Then the warm-up model is regarded as a feature extractor for constructing a similar graph to connect labeled samples and unlabeled samples,and the label propagation algorithm is adopted to propagate the label information from labeled nodes to unlabeled nodes in the graph to achieve the purpose of incremental classes recognition.Simulation results prove that the proposed method is superior to other finetuning methods and retrain methods. 展开更多
关键词 deep learning few-shot label propagation modulation classification semi-supervised learning
在线阅读 下载PDF
Spatial Distribution Feature Extraction Network for Open Set Recognition of Electromagnetic Signal
6
作者 Hui Zhang Huaji Zhou +1 位作者 Li Wang Feng Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期279-296,共18页
This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distri... This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distribution feature extraction layer in SDFEN replaces convolutional output neural networks with the spatial distribution features that focus more on inter-sample information by incorporating class center vectors.The designed hybrid loss function considers both intra-class distance and inter-class distance,thereby enhancing the similarity among samples of the same class and increasing the dissimilarity between samples of different classes during training.Consequently,this method allows unknown classes to occupy a larger space in the feature space.This reduces the possibility of overlap with known class samples and makes the boundaries between known and unknown samples more distinct.Additionally,the feature comparator threshold can be used to reject unknown samples.For signal open set recognition,seven methods,including the proposed method,are applied to two kinds of electromagnetic signal data:modulation signal and real-world emitter.The experimental results demonstrate that the proposed method outperforms the other six methods overall in a simulated open environment.Specifically,compared to the state-of-the-art Openmax method,the novel method achieves up to 8.87%and 5.25%higher micro-F-measures,respectively. 展开更多
关键词 Electromagnetic signal recognition deep learning feature extraction open set recognition
在线阅读 下载PDF
Deep radio signal clustering with interpretability analysis based on saliency map
7
作者 Huaji Zhou Jing Bai +3 位作者 Yiran Wang Junjie Ren Xiaoniu Yang Licheng Jiao 《Digital Communications and Networks》 CSCD 2024年第5期1448-1458,共11页
With the development of information technology,radio communication technology has made rapid progress.Many radio signals that have appeared in space are difficult to classify without manually labeling.Unsupervised rad... With the development of information technology,radio communication technology has made rapid progress.Many radio signals that have appeared in space are difficult to classify without manually labeling.Unsupervised radio signal clustering methods have recently become an urgent need for this situation.Meanwhile,the high complexity of deep learning makes it difficult to understand the decision results of the clustering models,making it essential to conduct interpretable analysis.This paper proposed a combined loss function for unsupervised clustering based on autoencoder.The combined loss function includes reconstruction loss and deep clustering loss.Deep clustering loss is added based on reconstruction loss,which makes similar deep features converge more in feature space.In addition,a features visualization method for signal clustering was proposed to analyze the interpretability of autoencoder utilizing Saliency Map.Extensive experiments have been conducted on a modulated signal dataset,and the results indicate the superior performance of our proposed method over other clustering algorithms.In particular,for the simulated dataset containing six modulation modes,when the SNR is 20dB,the clustering accuracy of the proposed method is greater than 78%.The interpretability analysis of the clustering model was performed to visualize the significant features of different modulated signals and verified the high separability of the features extracted by clustering model. 展开更多
关键词 Unsupervised radio signal clustering Autoencoder Clustering features visualization Deep learning interpretability
在线阅读 下载PDF
Spectrum Sensing Based on Deep Learning Classification for Cognitive Radios 被引量:17
8
作者 Shilian Zheng Shichuan Chen +2 位作者 Peihan Qi Huaji Zhou Xiaoniu Yang 《China Communications》 SCIE CSCD 2020年第2期138-148,共11页
Spectrum sensing is a key technology for cognitive radios.We present spectrum sensing as a classification problem and propose a sensing method based on deep learning classification.We normalize the received signal pow... Spectrum sensing is a key technology for cognitive radios.We present spectrum sensing as a classification problem and propose a sensing method based on deep learning classification.We normalize the received signal power to overcome the effects of noise power uncertainty.We train the model with as many types of signals as possible as well as noise data to enable the trained network model to adapt to untrained new signals.We also use transfer learning strategies to improve the performance for real-world signals.Extensive experiments are conducted to evaluate the performance of this method.The simulation results show that the proposed method performs better than two traditional spectrum sensing methods,i.e.,maximum-minimum eigenvalue ratio-based method and frequency domain entropy-based method.In addition,the experimental results of the new untrained signal types show that our method can adapt to the detection of these new signals.Furthermore,the real-world signal detection experiment results show that the detection performance can be further improved by transfer learning.Finally,experiments under colored noise show that our proposed method has superior detection performance under colored noise,while the traditional methods have a significant performance degradation,which further validate the superiority of our method. 展开更多
关键词 spectrum sensing deep learning convolutional neural network cognitive radio spectrum management
在线阅读 下载PDF
Generative Adversarial Network-Based Electromagnetic Signal Classification: A Semi- Supervised Learning Framework 被引量:10
9
作者 Huaji Zhou Licheng Jiao +3 位作者 Shilian Zheng Lifeng Yang Weiguo Shen Xiaoniu Yang 《China Communications》 SCIE CSCD 2020年第10期157-169,共13页
Generative adversarial network(GAN)has achieved great success in many fields such as computer vision,speech processing,and natural language processing,because of its powerful capabilities for generating realistic samp... Generative adversarial network(GAN)has achieved great success in many fields such as computer vision,speech processing,and natural language processing,because of its powerful capabilities for generating realistic samples.In this paper,we introduce GAN into the field of electromagnetic signal classification(ESC).ESC plays an important role in both military and civilian domains.However,in many specific scenarios,we can’t obtain enough labeled data,which cause failure of deep learning methods because they are easy to fall into over-fitting.Fortunately,semi-supervised learning(SSL)can leverage the large amount of unlabeled data to enhance the classification performance of classifiers,especially in scenarios with limited amount of labeled data.We present an SSL framework by incorporating GAN,which can directly process the raw in-phase and quadrature(IQ)signal data.According to the characteristics of the electromagnetic signal,we propose a weighted loss function,leading to an effective classifier to realize the end-to-end classification of the electromagnetic signal.We validate the proposed method on both public RML2016.04c dataset and real-world Aircraft Communications Addressing and Reporting System(ACARS)signal dataset.Extensive experimental results show that the proposed framework obtains a significant increase in classification accuracy compared with the state-of-the-art studies. 展开更多
关键词 generative adversarial network semi-supervised learning electromagnetic signal classification end-to-end classification weighted loss function
在线阅读 下载PDF
Incremental Learning of Radio Modulation Classification Based on Sample Recall 被引量:2
10
作者 Yan Zhao Shichuan Chen +4 位作者 Tao Chen Weiguo Shen Shilian Zheng Zhijin Zhao Xiaoniu Yang 《China Communications》 SCIE CSCD 2023年第7期258-272,共15页
Radio modulation classification has always been an important technology in the field of communications.The difficulty of incremental learning in radio modulation classification is that learning new tasks will lead to ... Radio modulation classification has always been an important technology in the field of communications.The difficulty of incremental learning in radio modulation classification is that learning new tasks will lead to catastrophic forgetting of old tasks.In this paper,we propose a sample memory and recall framework for incremental learning of radio modulation classification.For data with different signal-to-noise ratios,we use a partial memory strategy by selecting appropriate samples for memorizing.We compare the performance of our proposed method with three baselines through a large number of simulation experiments.Results show that our method achieves far higher classification accuracy than finetuning method and feature extraction method.Furthermore,it performs closely to joint training method which uses all old data in terms of classification accuracy which validates the effectiveness of our method against catastrophic forgetting. 展开更多
关键词 radio modulation classification incremen-tal learning deep learning convolutional neural net-work.
在线阅读 下载PDF
A robust TDOA based solution for source location using mixed Huber loss 被引量:2
11
作者 YOU Mingyi LU Annan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1375-1380,共6页
This paper proposes a source localization solution robust to measurement outliers in time differences of arrivals(TDOA)measurements.The solution uses a piecewise loss function named as mixed Huber loss(MHL)proposed ba... This paper proposes a source localization solution robust to measurement outliers in time differences of arrivals(TDOA)measurements.The solution uses a piecewise loss function named as mixed Huber loss(MHL)proposed based on the classical Huber loss(HL)and its refined version.The MHL is able to effectively mitigate the impact of all levels of measurement outliers by setting two triggering thresholds.In practice,appropriate triggering threshold values can be obtained through simulation given the level of measurement noise and a rough range of potential measurement outliers.A clustering based approach is proposed to further improve the robustness of localization solution against reference sensor related outliers.Simulations are included to examine the solution's performance and compare it with several benchmarks.The proposed MHL based solution is shown to be superior to the classical solution and the benchmarks.The solution is shown to be even robust to multiple measurement outliers.Furthermore,the influence of range measurement outliers in the reference sensor can be effectively mitigated by the clustering based approach. 展开更多
关键词 time differences of arrivals(TDOA) robust localization Huber loss(HL) outlier mitigation
在线阅读 下载PDF
Cognitive radio adaptation for power consumption minimization using biogeography-based optimization
12
作者 齐佩汉 郑仕链 +1 位作者 杨小牛 赵知劲 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期499-506,共8页
Adaptation is one of the key capabilities of cognitive radio, which focuses on how to adjust the radio parameters to optimize the system performance based on the knowledge of the radio environment and its capability a... Adaptation is one of the key capabilities of cognitive radio, which focuses on how to adjust the radio parameters to optimize the system performance based on the knowledge of the radio environment and its capability and characteristics. In this paper, we consider the cognitive radio adaptation problem for power consumption minimization. The problem is formulated as a constrained power consumption minimization problem, and the biogeography-based optimization (BBO) is introduced to solve this optimization problem. A novel habitat suitability index (HSI) evaluation mechanism is proposed, in which both the power consumption minimization objective and the quality of services (QoS) constraints are taken into account. The results show that under different QoS requirement settings corresponding to different types of services, the algorithm can minimize power consumption while still maintaining the QoS requirements. Comparison with particle swarm optimization (PSO) and cat swarm optimization (CSO) reveals that BBO works better, especially at the early stage of the search, which means that the BBO is a better choice for real-time applications. 展开更多
关键词 cognitive radio power consumption ADAPTATION OPTIMIZATION
在线阅读 下载PDF
Contrastive Clustering for Unsupervised Recognition of Interference Signals
13
作者 Xiangwei Chen Zhijin Zhao +3 位作者 Xueyi Ye Shilian Zheng Caiyi Lou Xiaoniu Yang 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1385-1400,共16页
Interference signals recognition plays an important role in anti-jamming communication.With the development of deep learning,many supervised interference signals recognition algorithms based on deep learning have emer... Interference signals recognition plays an important role in anti-jamming communication.With the development of deep learning,many supervised interference signals recognition algorithms based on deep learning have emerged recently and show better performance than traditional recognition algorithms.However,there is no unsupervised interference signals recognition algorithm at present.In this paper,an unsupervised interference signals recognition method called double phases and double dimensions contrastive clustering(DDCC)is proposed.Specifically,in the first phase,four data augmentation strategies for interference signals are used in data-augmentation-based(DA-based)contrastive learning.In the second phase,the original dataset’s k-nearest neighbor set(KNNset)is designed in double dimensions contrastive learning.In addition,a dynamic entropy parameter strategy is proposed.The simulation experiments of 9 types of interference signals show that random cropping is the best one of the four data augmentation strategies;the feature dimensional contrastive learning in the second phase can improve the clustering purity;the dynamic entropy parameter strategy can improve the stability of DDCC effectively.The unsupervised interference signals recognition results of DDCC and five other deep clustering algorithms show that the clustering performance of DDCC is superior to other algorithms.In particular,the clustering purity of our method is above 92%,SCAN’s is 81%,and the other three methods’are below 71%when jammingnoise-ratio(JNR)is−5 dB.In addition,our method is close to the supervised learning algorithm. 展开更多
关键词 Interference signals recognition unsupervised clustering contrastive learning deep learning k-nearest neighbor
在线阅读 下载PDF
Few-shot electromagnetic signal classification:A data union augmentation method 被引量:5
14
作者 Huaji ZHOU Jing BAI +5 位作者 Yiran WANG Licheng JIAO Shilian ZHENG Weiguo SHEN Jie XU Xiaoniu YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第9期49-57,共9页
Deep learning has been fully verified and accepted in the field of electromagnetic signal classification. However, in many specific scenarios, such as radio resource management for aircraft communications, labeled dat... Deep learning has been fully verified and accepted in the field of electromagnetic signal classification. However, in many specific scenarios, such as radio resource management for aircraft communications, labeled data are difficult to obtain, which makes the best deep learning methods at present seem almost powerless, because these methods need a large amount of labeled data for training. When the training dataset is small, it is highly possible to fall into overfitting, which causes performance degradation of the deep neural network. For few-shot electromagnetic signal classification, data augmentation is one of the most intuitive countermeasures. In this work, a generative adversarial network based on the data augmentation method is proposed to achieve better classification performance for electromagnetic signals. Based on the similarity principle, a screening mechanism is established to obtain high-quality generated signals. Then, a data union augmentation algorithm is designed by introducing spatiotemporally flipped shapes of the signal. To verify the effectiveness of the proposed data augmentation algorithm, experiments are conducted on the RADIOML 2016.04C dataset and real-world ACARS dataset. The experimental results show that the proposed method significantly improves the performance of few-shot electromagnetic signal classification. 展开更多
关键词 Data union augmentation Electromagnetic signal classification Few-shot Generative adversarial network Screening mechanism
原文传递
Bit Stream Oriented Enumeration Tree Pruning Algorithm
15
作者 邱卫东 金凌 +1 位作者 杨小牛 杨红娃 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第5期567-570,共4页
Packet analysis is very important in our digital life. But what protocol analyzers can do is limited because they can only process data in determined format. This paper puts forward a solution to decode raw data in an... Packet analysis is very important in our digital life. But what protocol analyzers can do is limited because they can only process data in determined format. This paper puts forward a solution to decode raw data in an unknown format. It is certain that data can be cut into packets because there are usually characteristic bit sequences in packet headers. The key to solve the problem is how to find out those characteristic sequences. We present an efficient way of bit sequence enumeration. Both Aho-Corasick (AC) algorithm and data mining method are used to reduce the cost of the process. 展开更多
关键词 pattern matching data mining frequent set frequent sequence association rule
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部