Devices with variable stiffness are drawing more and more attention with the growing interests of human-robot interaction,wearable robotics,rehabilitation robotics,etc.In this paper,the authors report on the design,an...Devices with variable stiffness are drawing more and more attention with the growing interests of human-robot interaction,wearable robotics,rehabilitation robotics,etc.In this paper,the authors report on the design,analysis and experiments of a stiffness variable passive compliant device whose structure is a combination of a reconfigurable elastic inner skeleton and an origami shell.The main concept of the reconfigurable skeleton is to have two elastic trapezoid four-bar linkages arranged in orthogonal.The stiffness variation generates from the passive deflection of the elastic limbs and is realized by actively switching the arrangement of the leaf springs and the passive joints in a fast,simple and straightforward manner.The kinetostatics and the compliance of the device are analyzed based on an efficient approach to the large deflection problem of the elastic links.A prototype is fabricated to conduct experiments for the assessment of the proposed concept.The results show that the prototype possesses relatively low stiffness under the compliant status and high stiffness under the stiff status with a status switching speed around 80 ms.展开更多
Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of com...Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of components in the assembly process,which is generally non-uniformly distributed in the whole working space.A comprehensive expression model for assembly geometric error is greatly helpful for machining quality control of machine tools to meet the demand for machining accuracy in practice.However,the expression ranges based on the standard quasistatic expression model for assembly geometric errors are far less than those needed in the whole working space of the multi-axis machine tool.To address this issue,a modeling methodology based on the Jacobian-Torsor model is proposed to describe the spatially distributed geometric errors.Firstly,an improved kinematic Jacobian-Torsor model is developed to describe the relative movements such as translation and rotation motion between assembly bodies,respectively.Furthermore,based on the proposed kinematic Jacobian-Torsor model,a spatial expression of geometric errors for the multi-axis machine tool is given.And simulation and experimental verification are taken with the investigation of the spatial distribution of geometric errors on five four-axis machine tools.The results validate the effectiveness of the proposed kinematic Jacobian-Torsor model in dealing with the spatial expression of assembly geometric errors.展开更多
The clinch–adhesive process,which combines mechanical clinching and adhesive bonding,is one of the most applied pro-cesses for joining aluminum alloy and steel in the manufacturing of vehicle bodies.In this hybrid pr...The clinch–adhesive process,which combines mechanical clinching and adhesive bonding,is one of the most applied pro-cesses for joining aluminum alloy and steel in the manufacturing of vehicle bodies.In this hybrid process,the clinching joints and adhesive bonds are coupled and influenced by each other,posing challenges to the process design and joining strength evaluation.To understand the influence of the clinching process on the performance of the adhesive layer,this study analyzes the mechanical behavior of clinch–adhesive joints between high-strength steel JSC780 and aluminum alloy A5052-H34 with different stack-up orientations and varying numbers of clinching points.The results reveal that,under the steel-on-top condition,the clinching process causes a discontinuous distribution of the adhesive layer,which significantly decreased the bonding strength.In contrast,under the aluminum-on-top condition,the clinching process has a lesser impact on the distribution of the adhesive layer,resulting in much higher strength than the steel-on-top condition.Simulation mod-els are constructed to quantify the effect of clinching points on the performance of the adhesive layer.The results highlight the need to consider diverse cohesive zone model parameters for the different stack orientations and clinching points in the design of clinch–adhesive aluminum alloy/steel structures.展开更多
基金Supported in part by National Key Research and Development Program of China(Grant No.2017YFE0111300)National Natural Science Foundation of China(Grant No.51875334)State Key Lab of Digital Manufacturing Equipment and Technology(Huazhong University of Science and Technology)(Grant No.DMETKF2019007).
文摘Devices with variable stiffness are drawing more and more attention with the growing interests of human-robot interaction,wearable robotics,rehabilitation robotics,etc.In this paper,the authors report on the design,analysis and experiments of a stiffness variable passive compliant device whose structure is a combination of a reconfigurable elastic inner skeleton and an origami shell.The main concept of the reconfigurable skeleton is to have two elastic trapezoid four-bar linkages arranged in orthogonal.The stiffness variation generates from the passive deflection of the elastic limbs and is realized by actively switching the arrangement of the leaf springs and the passive joints in a fast,simple and straightforward manner.The kinetostatics and the compliance of the device are analyzed based on an efficient approach to the large deflection problem of the elastic links.A prototype is fabricated to conduct experiments for the assessment of the proposed concept.The results show that the prototype possesses relatively low stiffness under the compliant status and high stiffness under the stiff status with a status switching speed around 80 ms.
基金Supported by National Natural Science Foundation of China (Grant No.51975369)National Key Science and Technology Research Program of China (Grant No.2019ZX04027001)。
文摘Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool.And it cannot be eliminated due to the error propagation of components in the assembly process,which is generally non-uniformly distributed in the whole working space.A comprehensive expression model for assembly geometric error is greatly helpful for machining quality control of machine tools to meet the demand for machining accuracy in practice.However,the expression ranges based on the standard quasistatic expression model for assembly geometric errors are far less than those needed in the whole working space of the multi-axis machine tool.To address this issue,a modeling methodology based on the Jacobian-Torsor model is proposed to describe the spatially distributed geometric errors.Firstly,an improved kinematic Jacobian-Torsor model is developed to describe the relative movements such as translation and rotation motion between assembly bodies,respectively.Furthermore,based on the proposed kinematic Jacobian-Torsor model,a spatial expression of geometric errors for the multi-axis machine tool is given.And simulation and experimental verification are taken with the investigation of the spatial distribution of geometric errors on five four-axis machine tools.The results validate the effectiveness of the proposed kinematic Jacobian-Torsor model in dealing with the spatial expression of assembly geometric errors.
基金supports of the National Key Research and Development Program of China(2022YFB3402200)Young Elite Scientists Sponsorship Program by CAST(2022-2024QNRC001)Shanghai Pujiang Program(22PJ1407200)。
文摘The clinch–adhesive process,which combines mechanical clinching and adhesive bonding,is one of the most applied pro-cesses for joining aluminum alloy and steel in the manufacturing of vehicle bodies.In this hybrid process,the clinching joints and adhesive bonds are coupled and influenced by each other,posing challenges to the process design and joining strength evaluation.To understand the influence of the clinching process on the performance of the adhesive layer,this study analyzes the mechanical behavior of clinch–adhesive joints between high-strength steel JSC780 and aluminum alloy A5052-H34 with different stack-up orientations and varying numbers of clinching points.The results reveal that,under the steel-on-top condition,the clinching process causes a discontinuous distribution of the adhesive layer,which significantly decreased the bonding strength.In contrast,under the aluminum-on-top condition,the clinching process has a lesser impact on the distribution of the adhesive layer,resulting in much higher strength than the steel-on-top condition.Simulation mod-els are constructed to quantify the effect of clinching points on the performance of the adhesive layer.The results highlight the need to consider diverse cohesive zone model parameters for the different stack orientations and clinching points in the design of clinch–adhesive aluminum alloy/steel structures.