A mesoscale coupled atmosphere–ocean model has been developed based on the GRAPES(Global and Regional Assimilation and Prediction System) regional typhoon model(GRAPES_TYM) and ECOM-si(estuary, coast and ocean m...A mesoscale coupled atmosphere–ocean model has been developed based on the GRAPES(Global and Regional Assimilation and Prediction System) regional typhoon model(GRAPES_TYM) and ECOM-si(estuary, coast and ocean model(semi-implicit)). Coupling between the typhoon and ocean models was conducted by exchanging wind stress, heat, moisture fluxes, and sea surface temperatures(SSTs) using the coupler OASIS3.0. Numerical prediction experiments were run with and without coupling for the case of Typhoon Muifa in the western North Pacific. To investigate the impact of using more accurate SST information on the simulation of the track and the intensity of Typhoon Muifa, experiments were also conducted using increased SST resolution in the initial condition field of the control test. The results indicate that increasing SST resolution in the initial condition field somewhat improved the intensity forecast, and use of the coupled model improved the intensity forecast significantly, with mean absolute errors in maximum wind speed within 48 and 72 h reduced by 32% and 20%, respectively. Use of the coupled model also resulted in less pronounced over-prediction of the intensity of Typhoon Muifa by the GRAPES_TYM. Moreover, the effects of using the coupled model on the intensity varied throughout the different stages of the development of Muifa owing to changes in the oceanic mixed layer depth. The coupled model had pronounced effects during the later stage of Muifa but had no obvious effects during the earlier stage. The SSTs predicted by the coupled model decreased by about 5–6℃ at most after the typhoon passed, in agreement with satellite data. Furthermore, based on analysis on the sea surface heat flux, wet static energy of the boundary layer, atmospheric temperature, and precipitation forecasted by the coupled model and the control test, the simulation results of this coupled atmosphere–ocean model can be considered to reasonably reflect the primary mechanisms underlying the interactions between tropical cyclones and oceans.展开更多
The climatology of significant wave height(SWH) and sea surface wind speed are matters of concern in the fields of both meteorology and oceanography because they are very important parameters for planning offshore s...The climatology of significant wave height(SWH) and sea surface wind speed are matters of concern in the fields of both meteorology and oceanography because they are very important parameters for planning offshore structures and ship routings. The TOPEX/Poseidon altimeter, which collected data for about 13 years from September 1992 to October 2005, has measured SWHs and surface wind speeds over most of the world's oceans. In this paper, a study of the global spatiotemporal distributions and variations of SWH and sea surface wind speed was conducted using the TOPEX/Poseidon altimeter data set. The range and characteristics of the variations were analyzed quantitatively for the Pacific, Atlantic, and Indian oceans. Areas of rough waves and strong sea surface winds were localized precisely, and the correlation between SWH and sea surface wind speed analyzed.展开更多
Based on the barotropic primitive equation in the polar coordinate system and the appropriate assumption, we obtained the mathematical equation of orographic forcing on unit mass air parcel. With the consideration of ...Based on the barotropic primitive equation in the polar coordinate system and the appropriate assumption, we obtained the mathematical equation of orographic forcing on unit mass air parcel. With the consideration of the frictional stress of the sea and land, supposing that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure is circular, a set of equations are derived, which describe the impact of orographic slope error, the central pressure error and position error of tropical cyclones on the wind field in the tropical cyclone. Typhoon Wipha (2007) is selected to verify the above interpretation method. The results show that the orographic slope, the frictional coefficient, the intensity and position of the cyclone are the important factors which have great influence on the interpretation of wind information about tropical cyclones. The dynamic interpretation method gives very good results, especially for the coastal area. It is applicable to improving the forecasts of the wind field in tropical cyclones.展开更多
By using in situ daily observations in East China during 1961-2007 and NCEP reanalysis data, the methods of statistical analyses, urban minus rural and observation minus reanalysis, it is revealed that the observed cl...By using in situ daily observations in East China during 1961-2007 and NCEP reanalysis data, the methods of statistical analyses, urban minus rural and observation minus reanalysis, it is revealed that the observed climate change and surface warming in East China were mainly induced by urbanization. The results show that East China has experienced two warmer periods of 1930s and 1980s in the past century; from 1951 to 2007, the regional mean temperature increased at a rate of 0.14℃ per decade; heat waves happened in urban center more frequently, and local climate showed a warming and dry trend; there was no significant linear trend in regional mean precipitation in the past 50 years. Urbanization was a crucial element for the regional warming; about 44% of the warming was due to heat island effect in the mega city.展开更多
Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over...Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over the western North Pacific(WNP)remains unknown.In this study,we examined the impact of the TEJ on the interannual variability of TC genesis frequency over the WNP in the TC season(June-September)during 1980-2020.The results show a significant positive correlation between TC genesis frequency over the WNP and the jet intensity in the entrance region of the TEJ over the tropical western Pacific(in brief WP_TEJ),with a correlation coefficient as high as 0.66.The intensified WP_TEJ results in strong ageostrophic northerly winds in the entrance region and thus upper-level divergence to the north of the jet axis over the main TC genesis region in the WNP.This would lead to an increase in upward motion in the troposphere with enhanced low-level convergence,which are the most important factors to the increases in low-level vorticity,mid-level humidity and low-level eddy kinetic energy,and the decreases in sea level pressure and vertical wind shear in the region.All these changes are favorable for TC genesis over the WNP and vice versa.Further analyses indicate that the interannual variability of the WP_TEJ intensity is likely to be linked to the local diabatic heating over the Indian Ocean-western Pacific and the central Pacific El Ni?o-Southern Oscillation.展开更多
This study presented an evaluation of tropical cyclone(TC) intensity forecasts from five global ensemble prediction systems(EPSs) during 2015-2019 in the western North Pacific region. Notable error features include th...This study presented an evaluation of tropical cyclone(TC) intensity forecasts from five global ensemble prediction systems(EPSs) during 2015-2019 in the western North Pacific region. Notable error features include the underestimation of the TC intensity by ensemble mean forecast and the under-dispersion of the probability forecasts.The root mean square errors(brier scores) of the ensemble mean(probability forecasts) generally decrease consecutively at long lead times during the five years, but fluctuate between certain values at short lead times.Positive forecast skill appeared in the most recent two years(2018-2019) at 120 h or later as compared with the climatology forecasts. However, there is no obvious improvement for the intensity change forecasts during the 5-year period, with abrupt intensity change remaining a big challenge. The probability forecasts show no skill for strong TCs at all the lead times. Among the five EPSs, ECMWF-EPS ranks the best for the intensity forecast, while NCEPGEFS ranks the best for the intensity change forecast, according to the evaluation of ensemble mean and dispersion.As for the other probability forecast evaluation, ECMWF-EPS ranks the best at lead times shorter than 72 h, while NCEP-GEFS ranks the best later on.展开更多
This study investigated the impact of sea surface temperature(SST)in several important areas of the Indian-Pacific basin on tropical cyclone(TC)activity over the western North Pacific(WNP)during the developing years o...This study investigated the impact of sea surface temperature(SST)in several important areas of the Indian-Pacific basin on tropical cyclone(TC)activity over the western North Pacific(WNP)during the developing years of three super El Ni?o events(1982,1997,and 2015)based on observations and numerical simulations.During the super El Ni?o years,TC intensity was enhanced considerably,TC days increased,TC tracks mostly recurved along the coasts,and fewer TCs made landfall in China.These characteristics are similar to the strong ENSO-TC relationship but further above the climatological means than in strong El Ni?o years.It indicates that super El Ni?o events play a dominant role in the intensities and tracks of WNP TCs.However,there were clear differences in both numbers and positions of TC genesis among the different super El Ni?o years.These features could be attributed to the collective impact of SST anomalies(SSTAs)in the tropical central-eastern Pacific and East Indian Ocean(EIO)and the SST gradient(SSTG)between the southwestern Pacific and the western Pacific warm pool.During 2015,the EIO SSTA was extremely warm and the anomalous anticyclone in the western WNP was enhanced,resulting in fewer TCs than normal.In 1982,the EIO SSTA and spring SSTG showed negative anomalies,followed by an increased anomalous cyclone in the western WNP and equatorial vertical wind shear.This intensified the conversion of eddy kinetic energy from large-scale flows,favorable for the westward shift of TC genesis.Consequently,anomalous TC activities during the super El Ni?o years resulted mainly from combined SSTA impacts of different key areas over the Indian-Pacific basin.展开更多
Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a ti...Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a time-dependent theory of TC intensification,termed the energetically based dynamical system(EBDS)model,together with the use of a long short-term memory(LSTM)neural network.In time-dependent theory,TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors,expressed as environmental dynamical efficiency.The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using besttrack TC data and global reanalysis data during 1982–2017.The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System(GFS)of the National Centers for Environmental Prediction during 2017–21.The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity.The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data.The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration(CMA)and those by other state-of-art statistical and dynamical forecast systems,except for the 72-h forecast.Particularly at the longer lead times of 96 h and 120 h,the new scheme has smaller forecast errors,with a more than 30%improvement over the official forecasts.展开更多
Because typhoons are one of the most major natural disasters in the southeastern coastal areas of China,great attention has been paid to the prevention and mitigation of the disasters caused by typhoons.Over the past ...Because typhoons are one of the most major natural disasters in the southeastern coastal areas of China,great attention has been paid to the prevention and mitigation of the disasters caused by typhoons.Over the past century,significant progress has been made in typhoon-related scientific research and operational work in China,including the construction of a network of typhoon monitoring stations,the establishment of forecasting operation systems,early warning and prevention of typhoon-related disasters,and the research of basic theories of typhoon behaviors and key forecasting technologies.This paper briefly reviews the milestones in the development history of typhoon research in China over the past century and a half in order to commemorate the predecessors,especially those who made historical contributions to the advancement of typhoon research since the economic and cultural reforms known as the"Opening of China",who provided historical references which enabled China to become an international leader in the field of typhoon science and technology.展开更多
To investigate the multiscale interaction characteristics of Landfall Typhoon Lekima(2019),this study analyzed the characteristics of the different scale vortex structure and interactions among different scales based ...To investigate the multiscale interaction characteristics of Landfall Typhoon Lekima(2019),this study analyzed the characteristics of the different scale vortex structure and interactions among different scales based on vorticity equation diagnosis.The analysis is based on the simulation results of the WRF model which has been thoroughly verified.The main results are as follows:the original vorticity dominated by the meso-αscale vorticity increases with height and then decreases,with maximum vorticity distributed at 900 hPa.The meso-βscale vorticity varies significantly with altitude,while the meso-γscale vorticityfield exhibits obvious positive vorticity below 850 hPa.The meso-αscale vorticity tendency primarily maintains negative,contributing significantly to the overall reduction in the original vorticityfield over time.The increase in mid-to-upper-level(above 550 hPa)original vorticity is mainly related to the variations in the meso-βand meso-γscale vorticityfields.The original vorticity dominated by the meso-αscale vorticity increases with height and then decreases,and the whole layer vorticity decreases over time.The meso-βscale vorticity varies significantly with altitude and time,while the meso-γscale vorticityfield consistently exhibits significant positive vorticity below 850 hPa.The vorticity equation diagnosis revealed that the primary source terms of the vorticity tendencies are the twisting and stretching terms,and the main sink terms being horizontal and vertical vorticity transport terms below 900 hPa.The source terms and sink terms exchange above 850 hPa.Scale separation results show that the primary contributions of all impact factors originate from the meso-αand meso-γscalefields(accounting for over 80%of the total),with the contribution of the meso-αscale being less than that of the meso-γscale and a notable contribution over 35.5%of the interactions between different scales.展开更多
Typhoon Lekima(2019)struck Zhejiang Province on 10 August 2019 as a supertyphoon,which severely impacted Zhejiang Province.The typhoon killed 45 people and left three others missing,and the total economic loss reached...Typhoon Lekima(2019)struck Zhejiang Province on 10 August 2019 as a supertyphoon,which severely impacted Zhejiang Province.The typhoon killed 45 people and left three others missing,and the total economic loss reached 40.71 billion yuan.This paper reports a postdisaster survey that focuses on the storm precipitation,flooding,landslides,and weather services associated with Typhoon Lekima(2019)along the southeastern coastline of Zhejiang Province.The survey was conducted by a joint survey team from the Shanghai Typhoon Institute and local meteorological bureaus from 26 to 28 August,2019,approximately two weeks after the disaster.Based on this survey and subsequent analyses of the results,we hope to develop countermeasures to prevent future tragedies.展开更多
POM (Princeton ocean model) tentatively taken as the ocean part of an ocean-land atmosphere coupled modcl is verified for the ultimate purpose of studying the landfall process of tropical cyclone (TC) in the western N...POM (Princeton ocean model) tentatively taken as the ocean part of an ocean-land atmosphere coupled modcl is verified for the ultimate purpose of studying the landfall process of tropical cyclone (TC) in the western North Pacific. The POM is tested with monthly mean wind stress in the summer and given lateral boundary conditions. The results indicate that the equilibrium state of the ocean is in accordance with the climate mean, with the error in sea surface temperature (salinity) less than 0.5 ℃ (0.5). The simulated occan currents are reasonable as well.Several numerical experiments are designed to verify the oceanic response to a stationary or moving TC. It is found that the results agree fairly well with the previous work, including both the drop magnitude and the distribution ofsca temperature. Compared with the simple two-layer ocean model used by some other studies, the response of the ocean to a TC is more logical here. The model is also verified in a real case with a TC passing the neighborhood of a buoy station. It is shown that the established ocean model can basically reproduce the sea surface temperature change as observed.展开更多
Loss normalization is the prerequisite for understanding the effects of socioeconomic development,vulnerability, and climate changes on the economic losses from tropical cyclones. In China, limited studies have been d...Loss normalization is the prerequisite for understanding the effects of socioeconomic development,vulnerability, and climate changes on the economic losses from tropical cyclones. In China, limited studies have been done on loss normalization methods of damages caused by tropical cyclones, and most of them have adopted an administrative division-based approach to define the exposure levels. In this study, a hazard footprint-based normalization method was proposed to improve the spatial resolution of affected areas and the associated exposures to influential tropical cyclones in China. The meteorological records of precipitation and near-surface wind speed were used to identify the hazard footprint of each influential tropical cyclone. Provincial-level and national-level(total)economic loss normalization(PLN and TLN) were carried out based on the respective hazard footprints, covering loss records between 1999–2015 and 1983–2015, respectively.Socioeconomic factors—inflation, population, and wealth(GDP per capita)—were used to normalize the losses. A significant increasing trend was found in inflation-adjusted losses during 1983–2015, while no significant trend was found after normalization with the TLN method. The proposed hazard footprint-based method contributes to amore realistic estimation of the population and wealth affected by the influential tropical cyclones for the original year and the present scenario.展开更多
The Experiment on Typhoon Intensity Change in Coastal Area(EXOTICCA) was proposed by the China Meteorological Administration(CMA) and Hong Kong Observatory(HKO) and endorsed by the ESCAP/WMO Typhoon Committee(TC). The...The Experiment on Typhoon Intensity Change in Coastal Area(EXOTICCA) was proposed by the China Meteorological Administration(CMA) and Hong Kong Observatory(HKO) and endorsed by the ESCAP/WMO Typhoon Committee(TC). The major goals and objectives of the EXOTICCA are: 1) to conduct the field campaigns on the intensity and structural characteristics of the target offshore and landfall tropical cyclones by employing integrated and novel observation techniques, and 2) to conduct demonstration research on the utilization of the synergized field observation data with the aim of deepening the understanding of the mechanism of structure and intensity changes, to improve the relevant capability of operational analysis, numerical weather prediction(NWP) models forecast, reliable storm surge and flooding and associated risk assessment. The Organizational structure and implementation schedule etc. are also introduced in this paper.展开更多
This study undertook verification of the applicability and accuracy of wind data measured using a WindCube V2 Doppler Wind Lidar(DWL).The data were collected as part of a field experiment in Zhoushan,Zhejiang Province...This study undertook verification of the applicability and accuracy of wind data measured using a WindCube V2 Doppler Wind Lidar(DWL).The data were collected as part of a field experiment in Zhoushan,Zhejiang Province(China),which was conducted by Shanghai Typhoon Institute of China Meteorological Administration during the passage of Super Typhoon Lekima(2019).The DWL measurements were compared with balloon-borne GPS radiosonde(GPS sonde)data,which were acquired using balloons launched from the DWL location.Results showed that wind speed measured by GPS sonde at heights of<100 m is unreliable owing to the drift effect.Optimal agreement(at heights of>100 m)was found for DWL-measured wind speed time-averaged during the ascent of the GPS sonde from the ground surface to the height of 270 m(correlation coefficient:0.82;root mean square(RMS):2.19 m·h^(-1)).Analysis revealed that precipitation intensity(PI)exerts considerable influence on both the carrier-to-noise ratio and the rate of missing DWL data;however,PI has minimal effect on the wind speed bias of DWL measurements.Specifically,the rate of missing DWL data increased with increasing measurement height and PI.For PI classed as heavy rain or less(PI<12 mm·h^(-1)),the DWL data below 300 m were considered valid,whereas for PI classed as a severe rainstorm(PI>90 m·h^(-1)),only data below 100 m were valid.Up to the height of 300 m,the RMS of the DWL measurements was nearly half that of wind profile radar(WPR)estimates(4.32 m·s^(-1)),indicating that DWL wind data are more accurate than WPR data under typhoon conditions.展开更多
Accurate prediction of tropical cyclone(TC)intensity remains a challenge due to the complex physical processes involved in TC intensity changes.A seven-day TC intensity prediction scheme based on the logistic growth e...Accurate prediction of tropical cyclone(TC)intensity remains a challenge due to the complex physical processes involved in TC intensity changes.A seven-day TC intensity prediction scheme based on the logistic growth equation(LGE)for the western North Pacific(WNP)has been developed using the observed and reanalysis data.In the LGE,TC intensity change is determined by a growth term and a decay term.These two terms are comprised of four free parameters which include a time-dependent growth rate,a maximum potential intensity(MPI),and two constants.Using 33 years of training samples,optimal predictors are selected first,and then the two constants are determined based on the least square method,forcing the regressed growth rate from the optimal predictors to be as close to the observed as possible.The estimation of the growth rate is further refined based on a step-wise regression(SWR)method and a machine learning(ML)method for the period 1982−2014.Using the LGE-based scheme,a total of 80 TCs during 2015−17 are used to make independent forecasts.Results show that the root mean square errors of the LGE-based scheme are much smaller than those of the official intensity forecasts from the China Meteorological Administration(CMA),especially for TCs in the coastal regions of East Asia.Moreover,the scheme based on ML demonstrates better forecast skill than that based on SWR.The new prediction scheme offers strong potential for both improving the forecasts for rapid intensification and weakening of TCs as well as for extending the 5-day forecasts currently issued by the CMA to 7-day forecasts.展开更多
This paper reviews the major achievements of the Working Group on Meteorology(WGM) of ESCAP/WMO Typhoon Committee since its establishment in 2004, especially in tropical cyclone observational research and scientific e...This paper reviews the major achievements of the Working Group on Meteorology(WGM) of ESCAP/WMO Typhoon Committee since its establishment in 2004, especially in tropical cyclone observational research and scientific experiments, tropical cyclone monitoring and forecasting technologies, seasonal prediction and climate change assessment for the past decade. The progress illustrates the great value of the Committee and WGM in monitoring and forecasting of tropical cyclones in the region and the improvement of disaster prevention and reduction capabilities.展开更多
The predictions for Super Typhoon Lekima(2019)have been evaluated from official forecasts,global models,regional models and ensemble prediction systems(EPSs)at lead times of 1–5 days.Track errors from most determinis...The predictions for Super Typhoon Lekima(2019)have been evaluated from official forecasts,global models,regional models and ensemble prediction systems(EPSs)at lead times of 1–5 days.Track errors from most deterministic forecasts are smaller than their annual mean errors in 2019.Compared to the propagation speed,the propagation direction of Lekima(2019)was much easier to determine for the official agency and numerical weather prediction(NWP)models.The National Centers for Environmental Prediction Global Ensemble Forecast System(NCEP-GEFS),Japan Meteorological Agency Global Ensemble Prediction System(JMA-GEPS)and Meteorological Service of Canada Ensemble System(MSC-CENS)are underdispersed,and the Shanghai Typhoon Institute Typhoon Ensemble Data Assimilation and Prediction System(STI-TEDAPS)is overdispersed,while the ensemble prediction system from European Centre for Medium-Range Weather Forecasts(ECMWF)shows adequate dispersion at all lead times.Most deterministic forecasting methods underestimated the intensity of Lekima(2019),especially for the rapid intensification period after Lekima(2019)entered the East China Sea.All of the deterministic forecasts performed well at predicting the first landfall point at Wenling,Zhejiang Province with a lead time of 24 and 48 h.展开更多
Previous studies on typhoon disaster risk zoning in China have focused on individual provinces or small-scale areas and lack county-level results.In this study,typhoon disaster risk zoning is conducted for China’s co...Previous studies on typhoon disaster risk zoning in China have focused on individual provinces or small-scale areas and lack county-level results.In this study,typhoon disaster risk zoning is conducted for China’s coastal area,based on data at the county level.Using precipitation and wind data for China and typhoon disaster and social data at the county level for China’s coastal area from 2004 to 2013,first we analyze the characteristics of typhoon disasters in China’s coastal area and then develop an intensity index of factors causing typhoon disasters and a comprehensive social vulnerability index.Finally,by combining the two indices,we obtain a comprehensive risk index for typhoon disasters and conduct risk zoning.The results show that the maximum intensity areas are mainly the most coastal areas of both Zhejiang and Guangdong,and parts of Hainan Island,which is similar to the distribution of typhoon disasters.The maximum values of vulnerability in the northwest of Guangxi,parts of Fujian coastal areas and parts of the Shandong Peninsula.The comprehensive risk index generally decreases from coastal areas to inland areas.The high-risk areas are mainly distributed over Hainan Island,south-western Guangdong,most coastal Zhejiang,the coastal areas between Zhejiang and Fujian and parts of the Shandong Peninsula.展开更多
This paper reports the post-disaster results due to Typhoon Megi. The survey was conducted by a joint survey team of Shanghai Typhoon Institute in 14 December 2016, with the support of Wenzhou Meteorological Bureau an...This paper reports the post-disaster results due to Typhoon Megi. The survey was conducted by a joint survey team of Shanghai Typhoon Institute in 14 December 2016, with the support of Wenzhou Meteorological Bureau and some meteorological departments in disaster areas. The survey results show that Typhoon Megi brought torrential rain and heavy rainstorm to the southern of Wenzhou City. The precipitation characters of Typhoon Megi are strong intensity, high accumulation, long duration and broken historical record. Typhoon winds affected wide,with large peripheral wind. According to the needs of defense and emergency rescue of Typhoon Megi,Wenzhou meteorological departments made every effort, including closely monitor, strengthening consultation, roll forecast, timely warning, active reporting, and targeted service. In order to provide scientific reference for government decision, the service of weather protection and disaster relief were done well. The results of typhoon forecast shows as follows.(1) The track, landing location and time of typhoon forecast were basically consistent with the actual situation.(2) The wind forecast was close to the actual.(3) The forecasted area precipitation was slightly lower, and the extreme value of process precipitation was too low. While the prediction of Dongtou Island Station was too high, this investigation shows that we are still insufficient in forecasting precipitation grades of typhoons breaking historical records, especially for precipitation quantification and meticulous prediction. In this case, more attention should be paid as below. 1) Effect of topography on precipitation enhancement. 2) Summary of similar cases. 3) Improve the defense ability and residents' awareness of risk. 4)Combine modem methods of early warning information with traditional methods. 5) Quantitative, fixed-pointed and precision forecast. 6) Rapid access of referent information to forecasters, 7) Modern monitoring technology(3 S, unmanned aerial vehicle) should be used for disaster investigation, monitor and hidden trouble detection.8) Carry out the renovation of the engineering construction design standards, impact assessment and structure of buildings.展开更多
基金The National Basic Research and Development Program(973 Program)of China under contract No.2009CB421506the National Natural Science Foundation of China under contract No.40975035China Meteorological Administration GRAPES Research Fund
文摘A mesoscale coupled atmosphere–ocean model has been developed based on the GRAPES(Global and Regional Assimilation and Prediction System) regional typhoon model(GRAPES_TYM) and ECOM-si(estuary, coast and ocean model(semi-implicit)). Coupling between the typhoon and ocean models was conducted by exchanging wind stress, heat, moisture fluxes, and sea surface temperatures(SSTs) using the coupler OASIS3.0. Numerical prediction experiments were run with and without coupling for the case of Typhoon Muifa in the western North Pacific. To investigate the impact of using more accurate SST information on the simulation of the track and the intensity of Typhoon Muifa, experiments were also conducted using increased SST resolution in the initial condition field of the control test. The results indicate that increasing SST resolution in the initial condition field somewhat improved the intensity forecast, and use of the coupled model improved the intensity forecast significantly, with mean absolute errors in maximum wind speed within 48 and 72 h reduced by 32% and 20%, respectively. Use of the coupled model also resulted in less pronounced over-prediction of the intensity of Typhoon Muifa by the GRAPES_TYM. Moreover, the effects of using the coupled model on the intensity varied throughout the different stages of the development of Muifa owing to changes in the oceanic mixed layer depth. The coupled model had pronounced effects during the later stage of Muifa but had no obvious effects during the earlier stage. The SSTs predicted by the coupled model decreased by about 5–6℃ at most after the typhoon passed, in agreement with satellite data. Furthermore, based on analysis on the sea surface heat flux, wet static energy of the boundary layer, atmospheric temperature, and precipitation forecasted by the coupled model and the control test, the simulation results of this coupled atmosphere–ocean model can be considered to reasonably reflect the primary mechanisms underlying the interactions between tropical cyclones and oceans.
基金The National Natural Science Foundation of China under contract No.41076003
文摘The climatology of significant wave height(SWH) and sea surface wind speed are matters of concern in the fields of both meteorology and oceanography because they are very important parameters for planning offshore structures and ship routings. The TOPEX/Poseidon altimeter, which collected data for about 13 years from September 1992 to October 2005, has measured SWHs and surface wind speeds over most of the world's oceans. In this paper, a study of the global spatiotemporal distributions and variations of SWH and sea surface wind speed was conducted using the TOPEX/Poseidon altimeter data set. The range and characteristics of the variations were analyzed quantitatively for the Pacific, Atlantic, and Indian oceans. Areas of rough waves and strong sea surface winds were localized precisely, and the correlation between SWH and sea surface wind speed analyzed.
基金National Basic Research Program of China (973 Program) (2009CB421505)major projects for science and technology development of Zhejiang province (2007C13G1610002)major promoting projects for new technology of China Meteorologycal Administration (09A13)
文摘Based on the barotropic primitive equation in the polar coordinate system and the appropriate assumption, we obtained the mathematical equation of orographic forcing on unit mass air parcel. With the consideration of the frictional stress of the sea and land, supposing that parcel velocity in tropical cyclones is in linear variation and that the distribution of surface pressure is circular, a set of equations are derived, which describe the impact of orographic slope error, the central pressure error and position error of tropical cyclones on the wind field in the tropical cyclone. Typhoon Wipha (2007) is selected to verify the above interpretation method. The results show that the orographic slope, the frictional coefficient, the intensity and position of the cyclone are the important factors which have great influence on the interpretation of wind information about tropical cyclones. The dynamic interpretation method gives very good results, especially for the coastal area. It is applicable to improving the forecasts of the wind field in tropical cyclones.
基金supported by the Climate Change Special Foundation of China Meteorological Administration(No.CCSF-09-10 and CCSF201202)National Natural Science Foundation of China (No.41001023)+1 种基金CAS Pilot Special Project (No.XDA05090204)Jiangsu Research and Innovation Program for Graduate Student (No.CXZZ12-0497)
文摘By using in situ daily observations in East China during 1961-2007 and NCEP reanalysis data, the methods of statistical analyses, urban minus rural and observation minus reanalysis, it is revealed that the observed climate change and surface warming in East China were mainly induced by urbanization. The results show that East China has experienced two warmer periods of 1930s and 1980s in the past century; from 1951 to 2007, the regional mean temperature increased at a rate of 0.14℃ per decade; heat waves happened in urban center more frequently, and local climate showed a warming and dry trend; there was no significant linear trend in regional mean precipitation in the past 50 years. Urbanization was a crucial element for the regional warming; about 44% of the warming was due to heat island effect in the mega city.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the National Natural Science Foundation of China(Grant Nos.42075015,41775060,41875114)+1 种基金the Science and Technology Commission of Shanghai MunicipalityChina(Grant No.20dz1200700)。
文摘Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over the western North Pacific(WNP)remains unknown.In this study,we examined the impact of the TEJ on the interannual variability of TC genesis frequency over the WNP in the TC season(June-September)during 1980-2020.The results show a significant positive correlation between TC genesis frequency over the WNP and the jet intensity in the entrance region of the TEJ over the tropical western Pacific(in brief WP_TEJ),with a correlation coefficient as high as 0.66.The intensified WP_TEJ results in strong ageostrophic northerly winds in the entrance region and thus upper-level divergence to the north of the jet axis over the main TC genesis region in the WNP.This would lead to an increase in upward motion in the troposphere with enhanced low-level convergence,which are the most important factors to the increases in low-level vorticity,mid-level humidity and low-level eddy kinetic energy,and the decreases in sea level pressure and vertical wind shear in the region.All these changes are favorable for TC genesis over the WNP and vice versa.Further analyses indicate that the interannual variability of the WP_TEJ intensity is likely to be linked to the local diabatic heating over the Indian Ocean-western Pacific and the central Pacific El Ni?o-Southern Oscillation.
基金National Key R&D Program of China(2017YFC1501604)National Natural Science Foundation of China (41875114)+1 种基金Shanghai Science&Technology Research Program (19dz1200101)Fundamental Research Funds of the STI/CMA (2020JB06)。
文摘This study presented an evaluation of tropical cyclone(TC) intensity forecasts from five global ensemble prediction systems(EPSs) during 2015-2019 in the western North Pacific region. Notable error features include the underestimation of the TC intensity by ensemble mean forecast and the under-dispersion of the probability forecasts.The root mean square errors(brier scores) of the ensemble mean(probability forecasts) generally decrease consecutively at long lead times during the five years, but fluctuate between certain values at short lead times.Positive forecast skill appeared in the most recent two years(2018-2019) at 120 h or later as compared with the climatology forecasts. However, there is no obvious improvement for the intensity change forecasts during the 5-year period, with abrupt intensity change remaining a big challenge. The probability forecasts show no skill for strong TCs at all the lead times. Among the five EPSs, ECMWF-EPS ranks the best for the intensity forecast, while NCEPGEFS ranks the best for the intensity change forecast, according to the evaluation of ensemble mean and dispersion.As for the other probability forecast evaluation, ECMWF-EPS ranks the best at lead times shorter than 72 h, while NCEP-GEFS ranks the best later on.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB956003)the National Natural Science Foundation of China(Nos.41375093,41475082)+1 种基金supported in part by the Youth Elite Project of the CMAby the Typhoon Scientific and Technological Innovation Group of Shanghai Meteorological Service
文摘This study investigated the impact of sea surface temperature(SST)in several important areas of the Indian-Pacific basin on tropical cyclone(TC)activity over the western North Pacific(WNP)during the developing years of three super El Ni?o events(1982,1997,and 2015)based on observations and numerical simulations.During the super El Ni?o years,TC intensity was enhanced considerably,TC days increased,TC tracks mostly recurved along the coasts,and fewer TCs made landfall in China.These characteristics are similar to the strong ENSO-TC relationship but further above the climatological means than in strong El Ni?o years.It indicates that super El Ni?o events play a dominant role in the intensities and tracks of WNP TCs.However,there were clear differences in both numbers and positions of TC genesis among the different super El Ni?o years.These features could be attributed to the collective impact of SST anomalies(SSTAs)in the tropical central-eastern Pacific and East Indian Ocean(EIO)and the SST gradient(SSTG)between the southwestern Pacific and the western Pacific warm pool.During 2015,the EIO SSTA was extremely warm and the anomalous anticyclone in the western WNP was enhanced,resulting in fewer TCs than normal.In 1982,the EIO SSTA and spring SSTG showed negative anomalies,followed by an increased anomalous cyclone in the western WNP and equatorial vertical wind shear.This intensified the conversion of eddy kinetic energy from large-scale flows,favorable for the westward shift of TC genesis.Consequently,anomalous TC activities during the super El Ni?o years resulted mainly from combined SSTA impacts of different key areas over the Indian-Pacific basin.
基金supported by the National Key R&D Program of China(Grant No.2017YFC1501604)the National Natural Science Foundation of China(Grant Nos.41875114 and 41875057).
文摘Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a time-dependent theory of TC intensification,termed the energetically based dynamical system(EBDS)model,together with the use of a long short-term memory(LSTM)neural network.In time-dependent theory,TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors,expressed as environmental dynamical efficiency.The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using besttrack TC data and global reanalysis data during 1982–2017.The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System(GFS)of the National Centers for Environmental Prediction during 2017–21.The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity.The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data.The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration(CMA)and those by other state-of-art statistical and dynamical forecast systems,except for the 72-h forecast.Particularly at the longer lead times of 96 h and 120 h,the new scheme has smaller forecast errors,with a more than 30%improvement over the official forecasts.
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFC1506400)the Projects of International Cooperation (Grant No. IPOVAI-04-05)
文摘Because typhoons are one of the most major natural disasters in the southeastern coastal areas of China,great attention has been paid to the prevention and mitigation of the disasters caused by typhoons.Over the past century,significant progress has been made in typhoon-related scientific research and operational work in China,including the construction of a network of typhoon monitoring stations,the establishment of forecasting operation systems,early warning and prevention of typhoon-related disasters,and the research of basic theories of typhoon behaviors and key forecasting technologies.This paper briefly reviews the milestones in the development history of typhoon research in China over the past century and a half in order to commemorate the predecessors,especially those who made historical contributions to the advancement of typhoon research since the economic and cultural reforms known as the"Opening of China",who provided historical references which enabled China to become an international leader in the field of typhoon science and technology.
基金funded by the National Natural Science Foundation of China(grant U2142206).W。
文摘To investigate the multiscale interaction characteristics of Landfall Typhoon Lekima(2019),this study analyzed the characteristics of the different scale vortex structure and interactions among different scales based on vorticity equation diagnosis.The analysis is based on the simulation results of the WRF model which has been thoroughly verified.The main results are as follows:the original vorticity dominated by the meso-αscale vorticity increases with height and then decreases,with maximum vorticity distributed at 900 hPa.The meso-βscale vorticity varies significantly with altitude,while the meso-γscale vorticityfield exhibits obvious positive vorticity below 850 hPa.The meso-αscale vorticity tendency primarily maintains negative,contributing significantly to the overall reduction in the original vorticityfield over time.The increase in mid-to-upper-level(above 550 hPa)original vorticity is mainly related to the variations in the meso-βand meso-γscale vorticityfields.The original vorticity dominated by the meso-αscale vorticity increases with height and then decreases,and the whole layer vorticity decreases over time.The meso-βscale vorticity varies significantly with altitude and time,while the meso-γscale vorticityfield consistently exhibits significant positive vorticity below 850 hPa.The vorticity equation diagnosis revealed that the primary source terms of the vorticity tendencies are the twisting and stretching terms,and the main sink terms being horizontal and vertical vorticity transport terms below 900 hPa.The source terms and sink terms exchange above 850 hPa.Scale separation results show that the primary contributions of all impact factors originate from the meso-αand meso-γscalefields(accounting for over 80%of the total),with the contribution of the meso-αscale being less than that of the meso-γscale and a notable contribution over 35.5%of the interactions between different scales.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41705096,41775065)Key Program for International S&T Cooperation Projects of China(No.2017YFE0107700)+2 种基金National Key R&D Program of China(No.2017YFC1501604)Shanghai Science&Technology Research Program(No.19dz1200101)Fundamental Research Funds of the STI/CMA(No.2019JB06).
文摘Typhoon Lekima(2019)struck Zhejiang Province on 10 August 2019 as a supertyphoon,which severely impacted Zhejiang Province.The typhoon killed 45 people and left three others missing,and the total economic loss reached 40.71 billion yuan.This paper reports a postdisaster survey that focuses on the storm precipitation,flooding,landslides,and weather services associated with Typhoon Lekima(2019)along the southeastern coastline of Zhejiang Province.The survey was conducted by a joint survey team from the Shanghai Typhoon Institute and local meteorological bureaus from 26 to 28 August,2019,approximately two weeks after the disaster.Based on this survey and subsequent analyses of the results,we hope to develop countermeasures to prevent future tragedies.
基金sponsored by the National Natural Science Foundation of China under contrct Nos 40575030,40275018 and 49975014.
文摘POM (Princeton ocean model) tentatively taken as the ocean part of an ocean-land atmosphere coupled modcl is verified for the ultimate purpose of studying the landfall process of tropical cyclone (TC) in the western North Pacific. The POM is tested with monthly mean wind stress in the summer and given lateral boundary conditions. The results indicate that the equilibrium state of the ocean is in accordance with the climate mean, with the error in sea surface temperature (salinity) less than 0.5 ℃ (0.5). The simulated occan currents are reasonable as well.Several numerical experiments are designed to verify the oceanic response to a stationary or moving TC. It is found that the results agree fairly well with the previous work, including both the drop magnitude and the distribution ofsca temperature. Compared with the simple two-layer ocean model used by some other studies, the response of the ocean to a TC is more logical here. The model is also verified in a real case with a TC passing the neighborhood of a buoy station. It is shown that the established ocean model can basically reproduce the sea surface temperature change as observed.
基金supported by the National Basic Research Program of China(Grant No.2015CB452806)the National Natural Science Foundation of China(Grant No.41701103)
文摘Loss normalization is the prerequisite for understanding the effects of socioeconomic development,vulnerability, and climate changes on the economic losses from tropical cyclones. In China, limited studies have been done on loss normalization methods of damages caused by tropical cyclones, and most of them have adopted an administrative division-based approach to define the exposure levels. In this study, a hazard footprint-based normalization method was proposed to improve the spatial resolution of affected areas and the associated exposures to influential tropical cyclones in China. The meteorological records of precipitation and near-surface wind speed were used to identify the hazard footprint of each influential tropical cyclone. Provincial-level and national-level(total)economic loss normalization(PLN and TLN) were carried out based on the respective hazard footprints, covering loss records between 1999–2015 and 1983–2015, respectively.Socioeconomic factors—inflation, population, and wealth(GDP per capita)—were used to normalize the losses. A significant increasing trend was found in inflation-adjusted losses during 1983–2015, while no significant trend was found after normalization with the TLN method. The proposed hazard footprint-based method contributes to amore realistic estimation of the population and wealth affected by the influential tropical cyclones for the original year and the present scenario.
文摘The Experiment on Typhoon Intensity Change in Coastal Area(EXOTICCA) was proposed by the China Meteorological Administration(CMA) and Hong Kong Observatory(HKO) and endorsed by the ESCAP/WMO Typhoon Committee(TC). The major goals and objectives of the EXOTICCA are: 1) to conduct the field campaigns on the intensity and structural characteristics of the target offshore and landfall tropical cyclones by employing integrated and novel observation techniques, and 2) to conduct demonstration research on the utilization of the synergized field observation data with the aim of deepening the understanding of the mechanism of structure and intensity changes, to improve the relevant capability of operational analysis, numerical weather prediction(NWP) models forecast, reliable storm surge and flooding and associated risk assessment. The Organizational structure and implementation schedule etc. are also introduced in this paper.
基金supported by the National Key R&D Program of China(No.2018YFB1501104)Key Program for International S&T Cooperation Projects of China(No.2017YFE0107700)+1 种基金National Natural Science Foundation of China(Grant No.41805088)Natural Science Foundation of Shanghai(No.18ZR1449100).
文摘This study undertook verification of the applicability and accuracy of wind data measured using a WindCube V2 Doppler Wind Lidar(DWL).The data were collected as part of a field experiment in Zhoushan,Zhejiang Province(China),which was conducted by Shanghai Typhoon Institute of China Meteorological Administration during the passage of Super Typhoon Lekima(2019).The DWL measurements were compared with balloon-borne GPS radiosonde(GPS sonde)data,which were acquired using balloons launched from the DWL location.Results showed that wind speed measured by GPS sonde at heights of<100 m is unreliable owing to the drift effect.Optimal agreement(at heights of>100 m)was found for DWL-measured wind speed time-averaged during the ascent of the GPS sonde from the ground surface to the height of 270 m(correlation coefficient:0.82;root mean square(RMS):2.19 m·h^(-1)).Analysis revealed that precipitation intensity(PI)exerts considerable influence on both the carrier-to-noise ratio and the rate of missing DWL data;however,PI has minimal effect on the wind speed bias of DWL measurements.Specifically,the rate of missing DWL data increased with increasing measurement height and PI.For PI classed as heavy rain or less(PI<12 mm·h^(-1)),the DWL data below 300 m were considered valid,whereas for PI classed as a severe rainstorm(PI>90 m·h^(-1)),only data below 100 m were valid.Up to the height of 300 m,the RMS of the DWL measurements was nearly half that of wind profile radar(WPR)estimates(4.32 m·s^(-1)),indicating that DWL wind data are more accurate than WPR data under typhoon conditions.
基金This study is supported by the National Key R&D Program of China(Grant Nos.2017YFC1501604 and 2019YFC1509101)the National Natural Science Foundation of China(Grant Nos.41875114,41875057,and 91937302).
文摘Accurate prediction of tropical cyclone(TC)intensity remains a challenge due to the complex physical processes involved in TC intensity changes.A seven-day TC intensity prediction scheme based on the logistic growth equation(LGE)for the western North Pacific(WNP)has been developed using the observed and reanalysis data.In the LGE,TC intensity change is determined by a growth term and a decay term.These two terms are comprised of four free parameters which include a time-dependent growth rate,a maximum potential intensity(MPI),and two constants.Using 33 years of training samples,optimal predictors are selected first,and then the two constants are determined based on the least square method,forcing the regressed growth rate from the optimal predictors to be as close to the observed as possible.The estimation of the growth rate is further refined based on a step-wise regression(SWR)method and a machine learning(ML)method for the period 1982−2014.Using the LGE-based scheme,a total of 80 TCs during 2015−17 are used to make independent forecasts.Results show that the root mean square errors of the LGE-based scheme are much smaller than those of the official intensity forecasts from the China Meteorological Administration(CMA),especially for TCs in the coastal regions of East Asia.Moreover,the scheme based on ML demonstrates better forecast skill than that based on SWR.The new prediction scheme offers strong potential for both improving the forecasts for rapid intensification and weakening of TCs as well as for extending the 5-day forecasts currently issued by the CMA to 7-day forecasts.
文摘This paper reviews the major achievements of the Working Group on Meteorology(WGM) of ESCAP/WMO Typhoon Committee since its establishment in 2004, especially in tropical cyclone observational research and scientific experiments, tropical cyclone monitoring and forecasting technologies, seasonal prediction and climate change assessment for the past decade. The progress illustrates the great value of the Committee and WGM in monitoring and forecasting of tropical cyclones in the region and the improvement of disaster prevention and reduction capabilities.
基金supported in part by the National Nature Science Foundation of China(Grant Nos.41875069 and 41975067)the National Key R&D Program of China(Nos.2018YFC1506406 and 2020YFE0201900)the Shanghai S&T Research Program(No.19dz1200101).
文摘The predictions for Super Typhoon Lekima(2019)have been evaluated from official forecasts,global models,regional models and ensemble prediction systems(EPSs)at lead times of 1–5 days.Track errors from most deterministic forecasts are smaller than their annual mean errors in 2019.Compared to the propagation speed,the propagation direction of Lekima(2019)was much easier to determine for the official agency and numerical weather prediction(NWP)models.The National Centers for Environmental Prediction Global Ensemble Forecast System(NCEP-GEFS),Japan Meteorological Agency Global Ensemble Prediction System(JMA-GEPS)and Meteorological Service of Canada Ensemble System(MSC-CENS)are underdispersed,and the Shanghai Typhoon Institute Typhoon Ensemble Data Assimilation and Prediction System(STI-TEDAPS)is overdispersed,while the ensemble prediction system from European Centre for Medium-Range Weather Forecasts(ECMWF)shows adequate dispersion at all lead times.Most deterministic forecasting methods underestimated the intensity of Lekima(2019),especially for the rapid intensification period after Lekima(2019)entered the East China Sea.All of the deterministic forecasts performed well at predicting the first landfall point at Wenling,Zhejiang Province with a lead time of 24 and 48 h.
基金This study was supported by the National Key R&D Program of China(Grant No.2019YFC1510205)the National Basic Research Program of China(No.2015CB452806)and the Jiangsu Collaborative Innovation Center for Climate Change.
文摘Previous studies on typhoon disaster risk zoning in China have focused on individual provinces or small-scale areas and lack county-level results.In this study,typhoon disaster risk zoning is conducted for China’s coastal area,based on data at the county level.Using precipitation and wind data for China and typhoon disaster and social data at the county level for China’s coastal area from 2004 to 2013,first we analyze the characteristics of typhoon disasters in China’s coastal area and then develop an intensity index of factors causing typhoon disasters and a comprehensive social vulnerability index.Finally,by combining the two indices,we obtain a comprehensive risk index for typhoon disasters and conduct risk zoning.The results show that the maximum intensity areas are mainly the most coastal areas of both Zhejiang and Guangdong,and parts of Hainan Island,which is similar to the distribution of typhoon disasters.The maximum values of vulnerability in the northwest of Guangxi,parts of Fujian coastal areas and parts of the Shandong Peninsula.The comprehensive risk index generally decreases from coastal areas to inland areas.The high-risk areas are mainly distributed over Hainan Island,south-western Guangdong,most coastal Zhejiang,the coastal areas between Zhejiang and Fujian and parts of the Shandong Peninsula.
文摘This paper reports the post-disaster results due to Typhoon Megi. The survey was conducted by a joint survey team of Shanghai Typhoon Institute in 14 December 2016, with the support of Wenzhou Meteorological Bureau and some meteorological departments in disaster areas. The survey results show that Typhoon Megi brought torrential rain and heavy rainstorm to the southern of Wenzhou City. The precipitation characters of Typhoon Megi are strong intensity, high accumulation, long duration and broken historical record. Typhoon winds affected wide,with large peripheral wind. According to the needs of defense and emergency rescue of Typhoon Megi,Wenzhou meteorological departments made every effort, including closely monitor, strengthening consultation, roll forecast, timely warning, active reporting, and targeted service. In order to provide scientific reference for government decision, the service of weather protection and disaster relief were done well. The results of typhoon forecast shows as follows.(1) The track, landing location and time of typhoon forecast were basically consistent with the actual situation.(2) The wind forecast was close to the actual.(3) The forecasted area precipitation was slightly lower, and the extreme value of process precipitation was too low. While the prediction of Dongtou Island Station was too high, this investigation shows that we are still insufficient in forecasting precipitation grades of typhoons breaking historical records, especially for precipitation quantification and meticulous prediction. In this case, more attention should be paid as below. 1) Effect of topography on precipitation enhancement. 2) Summary of similar cases. 3) Improve the defense ability and residents' awareness of risk. 4)Combine modem methods of early warning information with traditional methods. 5) Quantitative, fixed-pointed and precision forecast. 6) Rapid access of referent information to forecasters, 7) Modern monitoring technology(3 S, unmanned aerial vehicle) should be used for disaster investigation, monitor and hidden trouble detection.8) Carry out the renovation of the engineering construction design standards, impact assessment and structure of buildings.