As one of the oldest universities of modern China, Southwest Jiaotong University has experienced its grand journey transcending 3 centuries, witnessing 18 relocations. Known as "the Cornell of the East" and the birt...As one of the oldest universities of modern China, Southwest Jiaotong University has experienced its grand journey transcending 3 centuries, witnessing 18 relocations. Known as "the Cornell of the East" and the birthplace of China's modern education in transportation, mining and metallurgy and civil engineering, the university is now on the list of China's "211 Project", "985 Project Innovation Platform" and "2011 Plan". As the front-runner of rail transportation, Southwest Jiaotong University is now playing its active role in facilitating the globalization of China's high-speed railway.展开更多
With an increasingly number of cars on campus, the campus is faced with challenges of traffic order and safety. This paper, based on traffic calming and practical experience, took the Xipu campus of Southwest Jiaotong...With an increasingly number of cars on campus, the campus is faced with challenges of traffic order and safety. This paper, based on traffic calming and practical experience, took the Xipu campus of Southwest Jiaotong University as an example. Grounded on the traffic situation and characteristics of Xipu campus, the study analyzed the concept of traffic calming and its engineering measures, put forward traffic calming design scheme for Qiuhua Road on the Xipu campus with practical application of campus traffic characteristics, and stated the significance of campus traffic calming for its driving effect in creating an atmosphere of "environment cultivation" on campus. Finally, this paper discussed the development and application of traffic calming in China.展开更多
The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce...The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce adverse geological disasters under rainfall conditions.To ensure the smooth construction of the high-speed railway and the subsequent safe operation,it is necessary to master the stability evolution process of the loose accumulation slope under rainfall.This article simulates rainfall using the finite element analysis software’s hydromechanical coupling module.The slope stability under various rainfall situations is calculated and analysed based on the strength reduction method.To validate the simulation results,a field monitoring system is established to study the deformation characteristics of the slope under rainfall.The results show that rainfall duration is the key factor affecting slope stability.Given a constant amount of rainfall,the stability of the slope decreases with increasing duration of rainfall.Moreover,when the amount and duration of rainfall are constant,continuous rainfall has a greater impact on slope stability than intermittent rainfall.The setting of the field retaining structures has a significant role in improving slope stability.The field monitoring data show that the slope is in the initial deformation stage and has good stability,which verifies the rationality of the numerical simulation method.The research results can provide some references for understanding the influence of rainfall on the stability of loose accumulation slopes along high-speed railways and establishing a monitoring system.展开更多
The role of university English instructors has evolved significantly over the years,encompassing various aspects.This paper explores the evolution of the role of university English instructors and examines the current...The role of university English instructors has evolved significantly over the years,encompassing various aspects.This paper explores the evolution of the role of university English instructors and examines the current challenges and opportunities they face in today’s educational landscape.It delves into the multifaceted nature of their responsibilities and discusses the importance of continuous professional development to meet the evolving needs of students and the demands of the profession.展开更多
With the deepening of cross-cultural educational cooperation between China and Malaysia,the cross-cultural challenges that Chinese overseas students face in Malaysia due to language and cultural differences have becom...With the deepening of cross-cultural educational cooperation between China and Malaysia,the cross-cultural challenges that Chinese overseas students face in Malaysia due to language and cultural differences have become increasingly prominent.Focusing on Chinese graduate students at a public university in Malaysia where English is the medium of instruction,this study employs a scale survey method in conjunction with IBM SPSS 26.0 and Smart PLS 4.0 for data analysis to quantitatively explore the level of language anxiety and its relationship with cross-cultural adaptability and learning motivation.The results indicate that most Chinese graduate students experience notable language anxiety,which is significantly negatively correlated with cross-cultural adaptability,especially academic adaptability,but is not related to learning motivation.Furthermore,the study reveals the complex influencing mechanism of language anxiety within multicultural educational environments and offers suggestions for improvement tailored to Malaysia’s unique educational context.These include utilizing technological tools for language interventions,optimizing classroom teaching strategies,enhancing language learning motivation through external incentives,strengthening training for cross-cultural adaptation skills,and promoting deeper cross-cultural communication.This study provides theoretical support and practical references for alleviating language anxiety and enhancing the cross-cultural adaptability of Chinese overseas students.展开更多
In this work,we propose a comprehensive theoretical framework for the multilevel NAND(NOT AND logic)flash memory,built upon the modified Student’s t distribution where the distortion of the threshold voltage caused b...In this work,we propose a comprehensive theoretical framework for the multilevel NAND(NOT AND logic)flash memory,built upon the modified Student’s t distribution where the distortion of the threshold voltage caused by the random telegraph noise,cell-to-cell interference and data retention noise are jointly considered.Based on the superposition modulation,we build a non-orthogonal multiuser communication model where a linear mapping is conducted between the verify voltages and binary antipodal symbols.Aimed at improving the storage efficiency,we propose an unequal amplitude mapping(UAM)solution by optimizing the weighting coefficients of verify voltages to intelligently adjust the width of each state.Moreover,the uniform storage efficiency region and sum storage efficiency of different labelings with various decoding schemes are discussed.Simulation results validate the effectiveness of our proposed UAM solution where an up to 20.9%storage efficiency gain can be achieved compared to the current used benchmark scheme.In addition,analytical and simulation results also demonstrate that the successive cancellation decoding outperforms other decoding schemes for all labelings.展开更多
The suddenness, uncertainty, and randomness of rockbursts directly affect the safety of tunnel construction. The prediction of rockbursts is a fundamental aspect of mitigating or even eliminating rockburst hazards. To...The suddenness, uncertainty, and randomness of rockbursts directly affect the safety of tunnel construction. The prediction of rockbursts is a fundamental aspect of mitigating or even eliminating rockburst hazards. To address the shortcomings of the current rockburst prediction models, which have a limited number of samples and rely on manual test results as the majority of their input features, this paper proposes rockburst prediction models based on multi-featured drilling parameters of rock drilling jumbo. Firstly, four original drilling parameters, namely hammer pressure (Ph), feed pressure (Pf), rotation pressure (Pr), and feed speed (VP), together with the rockburst grades, were collected from 1093 rockburst cases. Then, a feature expansion investigation was performed based on the four original drilling parameters to establish a drilling parameter feature system and a rockburst prediction database containing 42 features. Furthermore, rockburst prediction models based on multi-featured drilling parameters were developed using the extreme tree (ET) algorithm and Bayesian optimization. The models take drilling parameters as input parameters and rockburst grades as output parameters. The effects of Bayesian optimization and the number of drilling parameter features on the model performance were analyzed using the accuracy, precision, recall and F1 value of the prediction set as the model performance evaluation indices. The results show that the Bayesian optimized model with 42 drilling parameter features as inputs performs best, with an accuracy of 91.89%. Finally, the reliability of the models was validated through field tests.展开更多
Based on the distribution of cooling load at a subway station and the peak-valley electricity price in Guangzhou,a chilled water storage system is reserved in the ample space above the station's distribution area....Based on the distribution of cooling load at a subway station and the peak-valley electricity price in Guangzhou,a chilled water storage system is reserved in the ample space above the station's distribution area.This study proposes a design scheme and operational strategy for a chilled water storage system suitable for subway engineering,based on calculating the cooling load and designing a chilled water storage system in a subway station.Additionally,it proposes calculation coefficients of hourly cooling load suitable for subway engineering and convenient for estimation of hourly cooling load.Furthermore,an economic analysis is conducted by combining hourly cooling load with time-of-use electricity prices.This study provides a reference for the design and application of chilled water storage systems in subsequent subway projects.展开更多
In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring t...In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.展开更多
As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal...As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal conversion ability have received extensive attention.Meeting the aforesaid requirements simultaneously remains a huge challenge.In this research,the melamine foam(MF)/polypyrrole(PPy)nanowire arrays(MF@PPy)were fabricated via one-step electrochemical polymerization.The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays.Due to the upwardly grown PPy nanowire arrays,the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00°and outstanding stability under various harsh environments.Meanwhile,the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays.Furthermore,taking advantage of the high conductivity(128.2 S m^(-1)),the MF@PPy foam exhibited rapid Joule heating under 3 V,resulting in dynamic infrared stealth and thermal camouflage effects.More importantly,the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm^(2)g^(-1).Strong EMI shielding was put down to the hierarchically porous PPy structure,which offered outstanding impedance matching,conduction loss,and multiple attenuations.This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays,showing great applications in both military and civilian fields.展开更多
BACKGROUND Minimally invasive pancreaticoduodenectomy(MIPD)is considered one of the most complex procedures in general surgery.The number of articles on MIPD has been increasing annually.However,published reports ofte...BACKGROUND Minimally invasive pancreaticoduodenectomy(MIPD)is considered one of the most complex procedures in general surgery.The number of articles on MIPD has been increasing annually.However,published reports often have complex research directions,and the focal points frequently change.Therefore,a comprehensive review and organization of the literature in this field is necessary.AIM To summarize current research,predict future hotspots and trends,and provide insights for MIPD development.METHODS To conduct the study,the Web of Science Core Collection was searched for relevant articles.The analysis focused on the top 100 articles in the field.Two widely used bibliometric tools,CiteSpace and VOSviewer,were used to examine various aspects,including research directions,authors,countries,institutions,journals,and keywords.RESULTS The top 100 articles were published between 2005 and 2022,with the majority originating from the United States(n=51).Among the contributing institutions,Pancreas Center of the University of Chicago and the Health System of the University of Chicago had the highest number of publications(n=17).In terms of individual authors,“Zeh HJ”and“Zureikat AH”led with 13 articles each.The high-frequency keywords in the literature encompassed three main areas:Surgical modality,perioperative outcomes,and the learning curve.These keywords were further categorized into seven primary clusters,with the largest being“laparoscopic pancreaticoduodenectomy”.CONCLUSION The most influential studies predominantly originate from the United States,and there is growing interest in robotic surgery.Despite MIPD’s potential benefits,further research is required to address technical challenges and improve outcomes.展开更多
The challenge of aerodynamic noise is a key obstacle in the advancement of low-pressure tube ultra-high-speed maglev transportation,demanding urgent resolution.This study utilizes a broadband noise source model to per...The challenge of aerodynamic noise is a key obstacle in the advancement of low-pressure tube ultra-high-speed maglev transportation,demanding urgent resolution.This study utilizes a broadband noise source model to perform a quantitative analysis of the aerodynamic noise produced by ultra-high-speed maglev trains operating in low-pressure environments.Initially,an external flow field calculation model for the ultra-high-speed maglev train is presented.Subsequently,numerical simulations based on the broadband noise source model are used to examine the noise characteristics.The impact of the train speed and pressure level on noise generation is investigated accordingly.Subsequently,a correlation formula is derived.The results reveal that the amplitude of sound source changes in the streamlined region of the head and tail cars of the train is large,and the amplitude of changes for the middle car is smaller.The noise source strength increases with speed,with a quadrupole noise source becoming dominant when the train speed exceeds 600 km/h.At a speed of 1000 km/h,the noise source intensity from the streamlined area at the rear of the train overcomes that at the front.Furthermore,the noise source decreases as the pressure level in the tube decreases.When the pressure level drops to 0.01 atm,the quadrupole noise source intensity of a train running at 600 km/h significantly weakens and falls below that of the dipole noise source.展开更多
To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The ...To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The yielding resistance enhancement effect(ω)caused by working environment constraints is evaluated through multi-layer composite sleeve hole expansion analysis,forming a theoretical framework for calculating the working yielding force.Laboratory and in-situ pull-out tests are conducted to determine the yielding performance and validate the analytical theory.The main conclusions are:(1)Yielding force and energy-release capacity increase withω,significantly outperforming the unconfined state.(2)In-situ tests under varying rockmass and geostress conditions(F1–F3)determine the yielding force increases to 183.4–290.1,204.0–290.8,and 235.0–327.1 kN.(3)The slight deviation(–12.5%to 6.2%)between the theoretical and measured yielding force confirms that the analytical theory effectively describes the working yielding performance.(4)ωincreases with higher geostress and improved rock mechanical properties,with initial geostress(σ_(0))and elastic modulus of surrounding rock(E_(3))identified as critical parameters.展开更多
The pressure wave generated by an urban-rail vehicle when passing through a tunnel affects the comfort of passengersand may even cause damage to the train and related tunnel structures.Therefore,controlling the trains...The pressure wave generated by an urban-rail vehicle when passing through a tunnel affects the comfort of passengersand may even cause damage to the train and related tunnel structures.Therefore,controlling the trainspeed in the tunnel is extremely important.In this study,this problem is investigated numerically in the frameworkof the standard k-εtwo-equation turbulence model.In particular,an eight-car urban rail train passingthrough a tunnel at different speeds(140,160,180 and 200 km/h)is considered.The results show that the maximumaerodynamic drag of the head and tail cars is most affected by the running speed.The pressure at selectedmeasuring points on the windward side of the head car is very high,and the negative pressure at the side windowof the driver’s cab of the tail car is also very large.From the head car to the tail car,the pressure at the same heightgradually decreases.The positive pressure peak at the head car and the negative pressure peak at the tail car aregreatly affected by the speed.展开更多
This study presents an experimental investigation into the effects of microbial induced carbonate precipitation(MICP)treatment factors on the shear behavior of MICP-treated loess soil.Several groups of loess samples w...This study presents an experimental investigation into the effects of microbial induced carbonate precipitation(MICP)treatment factors on the shear behavior of MICP-treated loess soil.Several groups of loess samples were prepared and subjected to MICP treatment with varying cementation reagent concentration,calcium source,and curing duration across three levels.The results indicate that the shear strength of MICP-treated loess achieves optimal performance when treated with the cementation reagent concentration of 1.0 M,cured for 14 days,and using calcium chloride as the calcium source.Compared to untreated loess,the cohesion and internal friction angle increased by approximately 77%and 26%,respectively.To evaluate the influence of these treatment variables,orthogonal analysis was performed on the obtained shear strength parameters.The analysis indicates that the cementation reagent concentration is the primary factor influencing shear strength,followed by the calcium source and curing duration.Additionally,scanning electron microscopy(SEM)tests were performed to investigate the microstructure of the MICP-treated samples.The results reveal that calcium carbonate significantly enhances the loess structure by creating large effective bonding areas,which in turn increases the bridging force.As a result,the overall shear strength of the treated loess shows a marked improvement compared to the untreated samples.展开更多
In this paper,the application of Non-Orthogonal Multiple Access(NOMA)is investigated in a multiple-input single-output network consisting of multiple legitimate users and a potential eavesdropper.To support secure tra...In this paper,the application of Non-Orthogonal Multiple Access(NOMA)is investigated in a multiple-input single-output network consisting of multiple legitimate users and a potential eavesdropper.To support secure transmissions from legitimate users,two NOMA Secrecy Sum Rate Transmit Beam Forming(NOMA-SSR-TBF)schemes are proposed to maximise the SSR of a Base Station(BS)with sufficient and insufficient transmit power.For BS with sufficient transmit power,an artificial jamming beamforming design scheme is proposed to disrupt the potential eavesdropping without impacting the legitimate transmissions.In addition,for BS with insufficient transmit power,a modified successive interference cancellation decoding sequence is used to reduce the impact of artificial jamming on legitimate transmissions.More specifically,iterative algorithm for the successive convex approximation are provided to jointly optimise the vectors of transmit beamforming and artificial jamming.Experimental results demonstrate that the proposed NOMA-SSR-TBF schemes outperforms the existing works,such as the maximized artificial jamming power scheme,the maximized artificial jamming power scheme with artificial jamming beamforming design and maximized secrecy sum rate scheme without artificial jamming beamforming design.展开更多
Improvement of microclimate comfort is good to save energy,and create and improve communication space,and promote sustainable development of countryside.Wind is an important factor that influences outdoor microclimate...Improvement of microclimate comfort is good to save energy,and create and improve communication space,and promote sustainable development of countryside.Wind is an important factor that influences outdoor microclimate and plant is an economic,high-efficiency and healthy choice to improve wind environment.This article discussed technical strategies of improving the microclimate comfort of rural residence in southwest mountainous areas,by taking use of native vegetations.The strategy is to set up the wind-guide or wind-break plant landscape system through site planting,courtyard planting and residence planting.展开更多
Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion wa...Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate.展开更多
文摘As one of the oldest universities of modern China, Southwest Jiaotong University has experienced its grand journey transcending 3 centuries, witnessing 18 relocations. Known as "the Cornell of the East" and the birthplace of China's modern education in transportation, mining and metallurgy and civil engineering, the university is now on the list of China's "211 Project", "985 Project Innovation Platform" and "2011 Plan". As the front-runner of rail transportation, Southwest Jiaotong University is now playing its active role in facilitating the globalization of China's high-speed railway.
基金Sponsored by Study on Synergetic Planning and Spatial Optimization of Urban Comprehensive Passenger Transportation Hub and Its Adjacent Area(51478388)
文摘With an increasingly number of cars on campus, the campus is faced with challenges of traffic order and safety. This paper, based on traffic calming and practical experience, took the Xipu campus of Southwest Jiaotong University as an example. Grounded on the traffic situation and characteristics of Xipu campus, the study analyzed the concept of traffic calming and its engineering measures, put forward traffic calming design scheme for Qiuhua Road on the Xipu campus with practical application of campus traffic characteristics, and stated the significance of campus traffic calming for its driving effect in creating an atmosphere of "environment cultivation" on campus. Finally, this paper discussed the development and application of traffic calming in China.
基金supported by the National Natural Science Foundation of China (No.51978588).
文摘The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce adverse geological disasters under rainfall conditions.To ensure the smooth construction of the high-speed railway and the subsequent safe operation,it is necessary to master the stability evolution process of the loose accumulation slope under rainfall.This article simulates rainfall using the finite element analysis software’s hydromechanical coupling module.The slope stability under various rainfall situations is calculated and analysed based on the strength reduction method.To validate the simulation results,a field monitoring system is established to study the deformation characteristics of the slope under rainfall.The results show that rainfall duration is the key factor affecting slope stability.Given a constant amount of rainfall,the stability of the slope decreases with increasing duration of rainfall.Moreover,when the amount and duration of rainfall are constant,continuous rainfall has a greater impact on slope stability than intermittent rainfall.The setting of the field retaining structures has a significant role in improving slope stability.The field monitoring data show that the slope is in the initial deformation stage and has good stability,which verifies the rationality of the numerical simulation method.The research results can provide some references for understanding the influence of rainfall on the stability of loose accumulation slopes along high-speed railways and establishing a monitoring system.
文摘The role of university English instructors has evolved significantly over the years,encompassing various aspects.This paper explores the evolution of the role of university English instructors and examines the current challenges and opportunities they face in today’s educational landscape.It delves into the multifaceted nature of their responsibilities and discusses the importance of continuous professional development to meet the evolving needs of students and the demands of the profession.
基金funded by the 2022 Annual Key Research Project on Theoretical and Practical Studies of Ideological and Political Education for University Students in GuangxiSpecial Focus on University Counselors:Exploration and Practice of a Cultivation Ecosystem for Cultivating Both Moral Character and Talent Through “One Virtue+Two Lines+Three Stages+Four Micro-Education Methods” for Ideological and Political Education in Universities from the Perspective of Peer Language Systems,Project No.:2022MSZ031
文摘With the deepening of cross-cultural educational cooperation between China and Malaysia,the cross-cultural challenges that Chinese overseas students face in Malaysia due to language and cultural differences have become increasingly prominent.Focusing on Chinese graduate students at a public university in Malaysia where English is the medium of instruction,this study employs a scale survey method in conjunction with IBM SPSS 26.0 and Smart PLS 4.0 for data analysis to quantitatively explore the level of language anxiety and its relationship with cross-cultural adaptability and learning motivation.The results indicate that most Chinese graduate students experience notable language anxiety,which is significantly negatively correlated with cross-cultural adaptability,especially academic adaptability,but is not related to learning motivation.Furthermore,the study reveals the complex influencing mechanism of language anxiety within multicultural educational environments and offers suggestions for improvement tailored to Malaysia’s unique educational context.These include utilizing technological tools for language interventions,optimizing classroom teaching strategies,enhancing language learning motivation through external incentives,strengthening training for cross-cultural adaptation skills,and promoting deeper cross-cultural communication.This study provides theoretical support and practical references for alleviating language anxiety and enhancing the cross-cultural adaptability of Chinese overseas students.
基金supported by Key Project of Sichuan Provincial Natural Science Foundation(No.2022NSFSC0043).
文摘In this work,we propose a comprehensive theoretical framework for the multilevel NAND(NOT AND logic)flash memory,built upon the modified Student’s t distribution where the distortion of the threshold voltage caused by the random telegraph noise,cell-to-cell interference and data retention noise are jointly considered.Based on the superposition modulation,we build a non-orthogonal multiuser communication model where a linear mapping is conducted between the verify voltages and binary antipodal symbols.Aimed at improving the storage efficiency,we propose an unequal amplitude mapping(UAM)solution by optimizing the weighting coefficients of verify voltages to intelligently adjust the width of each state.Moreover,the uniform storage efficiency region and sum storage efficiency of different labelings with various decoding schemes are discussed.Simulation results validate the effectiveness of our proposed UAM solution where an up to 20.9%storage efficiency gain can be achieved compared to the current used benchmark scheme.In addition,analytical and simulation results also demonstrate that the successive cancellation decoding outperforms other decoding schemes for all labelings.
基金supported by the China Railway Corporation Science and Technology Research and Development Program(Grant Nos.K2020G035 and K2021G024)the National Natural Science Foundation of China(Grant No.52378411).
文摘The suddenness, uncertainty, and randomness of rockbursts directly affect the safety of tunnel construction. The prediction of rockbursts is a fundamental aspect of mitigating or even eliminating rockburst hazards. To address the shortcomings of the current rockburst prediction models, which have a limited number of samples and rely on manual test results as the majority of their input features, this paper proposes rockburst prediction models based on multi-featured drilling parameters of rock drilling jumbo. Firstly, four original drilling parameters, namely hammer pressure (Ph), feed pressure (Pf), rotation pressure (Pr), and feed speed (VP), together with the rockburst grades, were collected from 1093 rockburst cases. Then, a feature expansion investigation was performed based on the four original drilling parameters to establish a drilling parameter feature system and a rockburst prediction database containing 42 features. Furthermore, rockburst prediction models based on multi-featured drilling parameters were developed using the extreme tree (ET) algorithm and Bayesian optimization. The models take drilling parameters as input parameters and rockburst grades as output parameters. The effects of Bayesian optimization and the number of drilling parameter features on the model performance were analyzed using the accuracy, precision, recall and F1 value of the prediction set as the model performance evaluation indices. The results show that the Bayesian optimized model with 42 drilling parameter features as inputs performs best, with an accuracy of 91.89%. Finally, the reliability of the models was validated through field tests.
基金supported by the Science and Technology Development Project of China Railway Design Corporation(Project No.2024CJ0401).
文摘Based on the distribution of cooling load at a subway station and the peak-valley electricity price in Guangzhou,a chilled water storage system is reserved in the ample space above the station's distribution area.This study proposes a design scheme and operational strategy for a chilled water storage system suitable for subway engineering,based on calculating the cooling load and designing a chilled water storage system in a subway station.Additionally,it proposes calculation coefficients of hourly cooling load suitable for subway engineering and convenient for estimation of hourly cooling load.Furthermore,an economic analysis is conducted by combining hourly cooling load with time-of-use electricity prices.This study provides a reference for the design and application of chilled water storage systems in subsequent subway projects.
基金Sponsored by the Project of Sichuan Landscape and Recreation Research Center(JGYQ2020037).
文摘In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.
基金supported by the Key Research and Development Program of Sichuan Province(Grant No.2023ZHCG0050)the Fundamental Research Funds for the Central Universities of China(Grant No.2682024QZ006 and 2682024ZTPY042)the Analytic and Testing Center of Southwest Jiaotong University.
文摘As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal conversion ability have received extensive attention.Meeting the aforesaid requirements simultaneously remains a huge challenge.In this research,the melamine foam(MF)/polypyrrole(PPy)nanowire arrays(MF@PPy)were fabricated via one-step electrochemical polymerization.The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays.Due to the upwardly grown PPy nanowire arrays,the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00°and outstanding stability under various harsh environments.Meanwhile,the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays.Furthermore,taking advantage of the high conductivity(128.2 S m^(-1)),the MF@PPy foam exhibited rapid Joule heating under 3 V,resulting in dynamic infrared stealth and thermal camouflage effects.More importantly,the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm^(2)g^(-1).Strong EMI shielding was put down to the hierarchically porous PPy structure,which offered outstanding impedance matching,conduction loss,and multiple attenuations.This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays,showing great applications in both military and civilian fields.
基金Supported by the Project of the Hospital Management of the General Hospital of Western Theater Command,No.2024-YGLC-A01.
文摘BACKGROUND Minimally invasive pancreaticoduodenectomy(MIPD)is considered one of the most complex procedures in general surgery.The number of articles on MIPD has been increasing annually.However,published reports often have complex research directions,and the focal points frequently change.Therefore,a comprehensive review and organization of the literature in this field is necessary.AIM To summarize current research,predict future hotspots and trends,and provide insights for MIPD development.METHODS To conduct the study,the Web of Science Core Collection was searched for relevant articles.The analysis focused on the top 100 articles in the field.Two widely used bibliometric tools,CiteSpace and VOSviewer,were used to examine various aspects,including research directions,authors,countries,institutions,journals,and keywords.RESULTS The top 100 articles were published between 2005 and 2022,with the majority originating from the United States(n=51).Among the contributing institutions,Pancreas Center of the University of Chicago and the Health System of the University of Chicago had the highest number of publications(n=17).In terms of individual authors,“Zeh HJ”and“Zureikat AH”led with 13 articles each.The high-frequency keywords in the literature encompassed three main areas:Surgical modality,perioperative outcomes,and the learning curve.These keywords were further categorized into seven primary clusters,with the largest being“laparoscopic pancreaticoduodenectomy”.CONCLUSION The most influential studies predominantly originate from the United States,and there is growing interest in robotic surgery.Despite MIPD’s potential benefits,further research is required to address technical challenges and improve outcomes.
基金funded by the Talent Program(Ph.D.Fund)of Chengdu Technological University(grant number 2024RC025)the Natural Science Foundation of Sichuan Province(grant number 2022NSFSC1892)Fundamental Research Funds for the Central Universities(grant number XJ2021KJZK054).
文摘The challenge of aerodynamic noise is a key obstacle in the advancement of low-pressure tube ultra-high-speed maglev transportation,demanding urgent resolution.This study utilizes a broadband noise source model to perform a quantitative analysis of the aerodynamic noise produced by ultra-high-speed maglev trains operating in low-pressure environments.Initially,an external flow field calculation model for the ultra-high-speed maglev train is presented.Subsequently,numerical simulations based on the broadband noise source model are used to examine the noise characteristics.The impact of the train speed and pressure level on noise generation is investigated accordingly.Subsequently,a correlation formula is derived.The results reveal that the amplitude of sound source changes in the streamlined region of the head and tail cars of the train is large,and the amplitude of changes for the middle car is smaller.The noise source strength increases with speed,with a quadrupole noise source becoming dominant when the train speed exceeds 600 km/h.At a speed of 1000 km/h,the noise source intensity from the streamlined area at the rear of the train overcomes that at the front.Furthermore,the noise source decreases as the pressure level in the tube decreases.When the pressure level drops to 0.01 atm,the quadrupole noise source intensity of a train running at 600 km/h significantly weakens and falls below that of the dipole noise source.
基金supported by the National Natural Science Foundation of China(Nos.U2468217,U2034205,and 52308391)。
文摘To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The yielding resistance enhancement effect(ω)caused by working environment constraints is evaluated through multi-layer composite sleeve hole expansion analysis,forming a theoretical framework for calculating the working yielding force.Laboratory and in-situ pull-out tests are conducted to determine the yielding performance and validate the analytical theory.The main conclusions are:(1)Yielding force and energy-release capacity increase withω,significantly outperforming the unconfined state.(2)In-situ tests under varying rockmass and geostress conditions(F1–F3)determine the yielding force increases to 183.4–290.1,204.0–290.8,and 235.0–327.1 kN.(3)The slight deviation(–12.5%to 6.2%)between the theoretical and measured yielding force confirms that the analytical theory effectively describes the working yielding performance.(4)ωincreases with higher geostress and improved rock mechanical properties,with initial geostress(σ_(0))and elastic modulus of surrounding rock(E_(3))identified as critical parameters.
基金supported by the Beijing Postdoctoral Research Foundation(No.2023-ZZ-133)Scientific Research Foundation of Beijing Infrastructure Investment Co.,Ltd.(No.2023-ZB-03)Fundamental Research Funds for the Central Universities(No.2682023ZTPY036).
文摘The pressure wave generated by an urban-rail vehicle when passing through a tunnel affects the comfort of passengersand may even cause damage to the train and related tunnel structures.Therefore,controlling the trainspeed in the tunnel is extremely important.In this study,this problem is investigated numerically in the frameworkof the standard k-εtwo-equation turbulence model.In particular,an eight-car urban rail train passingthrough a tunnel at different speeds(140,160,180 and 200 km/h)is considered.The results show that the maximumaerodynamic drag of the head and tail cars is most affected by the running speed.The pressure at selectedmeasuring points on the windward side of the head car is very high,and the negative pressure at the side windowof the driver’s cab of the tail car is also very large.From the head car to the tail car,the pressure at the same heightgradually decreases.The positive pressure peak at the head car and the negative pressure peak at the tail car aregreatly affected by the speed.
基金This work is supported by the Young Talent Fund of Association for Science and Technology in Shaanxi,China(20240722)the Shaanxi Province Postdoctoral Research Project(2023BSHYDZZ138)+2 种基金the Open Research Fund of Key Laboratory of Construction and Safety of Water Engineering of the Ministry of Water Resources,China Institute of Water Resources and Hydropower Research(NO.IWHR-ENGI-202305)Open project of Engineering Research Center of Concrete Technology under Marine Environment,Ministry of Education(2024KFKT-YB12)Shandong Youth Innovation Team(No.2023KJ324).
文摘This study presents an experimental investigation into the effects of microbial induced carbonate precipitation(MICP)treatment factors on the shear behavior of MICP-treated loess soil.Several groups of loess samples were prepared and subjected to MICP treatment with varying cementation reagent concentration,calcium source,and curing duration across three levels.The results indicate that the shear strength of MICP-treated loess achieves optimal performance when treated with the cementation reagent concentration of 1.0 M,cured for 14 days,and using calcium chloride as the calcium source.Compared to untreated loess,the cohesion and internal friction angle increased by approximately 77%and 26%,respectively.To evaluate the influence of these treatment variables,orthogonal analysis was performed on the obtained shear strength parameters.The analysis indicates that the cementation reagent concentration is the primary factor influencing shear strength,followed by the calcium source and curing duration.Additionally,scanning electron microscopy(SEM)tests were performed to investigate the microstructure of the MICP-treated samples.The results reveal that calcium carbonate significantly enhances the loess structure by creating large effective bonding areas,which in turn increases the bridging force.As a result,the overall shear strength of the treated loess shows a marked improvement compared to the untreated samples.
基金supported in part by the Natural Science Foundation of Fujian Province under Grant 2022J01169the Local Science and Technology Development of Fujian Province under Grant 2021L3010+3 种基金the Key Project of Science and Technology Innovation of Fujian Province under Grant 2021G02006the National Natural Science Foundation of China under Grants 61971360 and 62271420the National Natural Science Foundation of China under Grant 62071247the Urban Carbon Neutral Science and Technology Innovation Fund Project of Beijing University of Technology ($040000514122607$)。
文摘In this paper,the application of Non-Orthogonal Multiple Access(NOMA)is investigated in a multiple-input single-output network consisting of multiple legitimate users and a potential eavesdropper.To support secure transmissions from legitimate users,two NOMA Secrecy Sum Rate Transmit Beam Forming(NOMA-SSR-TBF)schemes are proposed to maximise the SSR of a Base Station(BS)with sufficient and insufficient transmit power.For BS with sufficient transmit power,an artificial jamming beamforming design scheme is proposed to disrupt the potential eavesdropping without impacting the legitimate transmissions.In addition,for BS with insufficient transmit power,a modified successive interference cancellation decoding sequence is used to reduce the impact of artificial jamming on legitimate transmissions.More specifically,iterative algorithm for the successive convex approximation are provided to jointly optimise the vectors of transmit beamforming and artificial jamming.Experimental results demonstrate that the proposed NOMA-SSR-TBF schemes outperforms the existing works,such as the maximized artificial jamming power scheme,the maximized artificial jamming power scheme with artificial jamming beamforming design and maximized secrecy sum rate scheme without artificial jamming beamforming design.
基金Sponsored by Foundation or Science&lechnology Department of Sichuan Province(2008SZ0151)
文摘Improvement of microclimate comfort is good to save energy,and create and improve communication space,and promote sustainable development of countryside.Wind is an important factor that influences outdoor microclimate and plant is an economic,high-efficiency and healthy choice to improve wind environment.This article discussed technical strategies of improving the microclimate comfort of rural residence in southwest mountainous areas,by taking use of native vegetations.The strategy is to set up the wind-guide or wind-break plant landscape system through site planting,courtyard planting and residence planting.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC1127)the Fundamental Research Funds for the Central Universities(No.2682023CX075).
文摘Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate.