Due to the large and frequent static data interaction between the Electric Information Acquisition System and the external business systems,researching on using limited server sources to do an efficient task schedulin...Due to the large and frequent static data interaction between the Electric Information Acquisition System and the external business systems,researching on using limited server sources to do an efficient task scheduling is becoming one of the key technologies of the unified interface platform.The information interaction structure of the unified interface platform is introduced.Task scheduling has been decomposed into two stages,task decomposition and task combination,based on the features(various types and dispersed)of large static data.The principle of the minimum variance of the subtasks data quantity is used to do the target task resolving in the decomposition stage.The thought of the Greedy Algorithm is used in the task combination.Breaking the target task with large static data into serval composed tasks with roughly same data quantity is effectively realized.Meanwhile,to avoid the situation of the GA falling into the local optimal solution,an improved combination method has been put forward.Moreover,the new method creates more average composed tasks and making the task scheduling more effective.Ultimately,the effectiveness of the proposed method is verified by the experimental data.展开更多
Due to the stochasticity of charging behaviors of electric vehicles(EVs),it is difficult to anticipate when charging load demand will be densely concentrated.If massive charging loads and the system peak profile appea...Due to the stochasticity of charging behaviors of electric vehicles(EVs),it is difficult to anticipate when charging load demand will be densely concentrated.If massive charging loads and the system peak profile appear at the same time,it may pose a risk to the reliable operation of power grids.For a system integrated with renewable energies,this risk can be much higher because of their unsteady power output.With load measurements more widely collected,this paper presents a data-driven framework to assess the reliability of a power grid considering charging EVs.Specifically,the diffusion estimator is firstly applied to estimate the probability density function of EV charging loads,which possesses both regional adaptivity and good boundary estimation performance.Then,charging load samples are produced through slice sampling.It is capable of sampling from irregularly-shaped distributions with high accuracy.The proposed approach is verified by the numerical results from the simulations on a modified IEEE 30-bus test system based on real measurement data.展开更多
Mobile crowdsensing(MCS)is an emerging pattern which means task initiators attract mobile users sensing with their own devices by some platforms.MCS could exploit idle resources in low cost,while it has lots of flaws,...Mobile crowdsensing(MCS)is an emerging pattern which means task initiators attract mobile users sensing with their own devices by some platforms.MCS could exploit idle resources in low cost,while it has lots of flaws,which impede its developments.First,isolations between different MCS systems leads to wastage of social resources.What’s more,current MCS always operate in a centralized way,which causes it vulnerable and unbelievable.Blockchain is a promising technology which could supply a credible and transparent environment.This paper construct a blockchain based MCS market and design smart contract for its operation.In our design,platform breaks isolation by blockchain,task initiators and mobile users manage their tasks by smart contract and bargain price with distributed algorithm.By this way,resource could be exploited better,and the market could be more fair.What’s more,the paper analyzes Walrasian Equilibrium(WE)in the market,and details how to deploy MCS in blockchain.Evalution results shows that Equilibrium could be found.展开更多
Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the n...Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the newly launched carbon market due to its short history.Based on the idea of transfer learning,this paper proposes a novel price forecasting model,which utilizes the correlation between the new and mature markets.The model is firstly pretrained on large data of mature market by gated recurrent unit algorithm,and then fine-tuned by the target market samples.An integral framework,including complexity decomposition method for data pre-processing,sample entropy for feature selection,and support vector regression for result post-processing,is provided.In the empirical analysis of new Chinese market,the root mean square error,mean absolute error,mean absolute percentage error,and determination coefficient of the model are 0.529,0.476,0.717%and 0.501 respectively,proving its validity.展开更多
In this letter,a new formulation of Lebesgue integration is used to evaluate the probabilistic static security of power system operation with uncertain renewable energy generation.The risk of power flow solutions viol...In this letter,a new formulation of Lebesgue integration is used to evaluate the probabilistic static security of power system operation with uncertain renewable energy generation.The risk of power flow solutions violating any pre-defined operation security limits is obtained by integrating a semialgebraic set composed of polynomials.With the high-order moments of historical data of renewable energy generation,the integration is reformulated as a generalized moment problem which is then relaxed to a semi-definite program(SDP).Finally,the effectiveness of the proposed method is verified by numerical examples.展开更多
We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology fo...We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology for effectively measuring the transfer impedance of the high frequency current transformers(HFCTs).The proposed technology called pulse injection method obtains the system response under the excitation of the wide-band instantaneous pulse signal.Firstly,by studying the working principle of HFCTs,we summarize that the bandwidth of the selected signal acquisition device should be at least 100 MHz to ensure measurement accuracy.Secondly,Gauss pulse and square wave pulse are generated to determine the effects of different sources.The measurement results indicate that Gauss pulse is more suitable for pulse injection method,and the rise time should be under 10 ns to improve the starting frequency of oscillation distortion.Finally,the transfer impedance curves of five types of HFCTs are acquired by both pulse injection and traditional point-frequency methods.The measurement results show a remarkable consistency between two methods.However,pulse injection method requires the simpler operation and lias a higher resolution,obviously improving the measurement efficiency and bet ter displaying the details of the transfer impedance curves.展开更多
In order to deal with frequency deviation andsupply-demand imbalance in active distribution power system, inthis paper a distributed under frequency load shedding (UFLS)strategy is proposed. Different from conventiona...In order to deal with frequency deviation andsupply-demand imbalance in active distribution power system, inthis paper a distributed under frequency load shedding (UFLS)strategy is proposed. Different from conventional centralizedUFLS schemes, no centralized master station gathering all thebuses’ information is required. Instead, each bus decides itsown load shedding amount by only relying on limited peer-topeer communication. However, such UFLS strategy may sufferfrom some unexpected cyber-attacks such as integrity attacksand denial of service (DoS) attack. The latter DoS attack aimsto degrade the system performance by jamming or breakingthe communication, which is of high probability to happen inpractical power system. To assess the vulnerability of proposeddistributed UFLS algorithm, the effect of DoS attack on distributed average consensus algorithm is theoretically derived,which indicates that the final consensus value can be estimatedby a given attack probability. It is also investigated that such DoSattack does harm to the load shedding amount and finally affectsthe system frequency performance in the active distributionpower system. Several case studies implemented on an IEEE33-bus active distribution power system are conducted to verifythe effectiveness of the theoretical findings and investigate thevulnerability of the considered power system.展开更多
We first present a new multi-modular shunt active power filter system suitable for large-capacity compensation. Each module in the system has the same circuit topology, system functionality, and controller design, to ...We first present a new multi-modular shunt active power filter system suitable for large-capacity compensation. Each module in the system has the same circuit topology, system functionality, and controller design, to achieve coordination control among the modules. The module's reference signals are obtained by multiplying the total reference signal by the respective distribution coefficient. Next, a novel fault-tolerant approach is proposed based on split-phase control in the a-b-c frame and real-time bus communication. When a phase fault occurs, instead of halting the whole module, the proposed strategy isolates only the faulted bridge arm, and then recalculates the distribution coefficients and transfers the compensation capacity to the same phases of the other normal modules, resulting in a continuous operation of the faulted module and optimization of the remaining usable power devices. Through steady-state analysis of the post-fault circuit, the system stability and control reliability are proven to be high enough to guarantee its engineering application value. Finally, a prototype is established and experimental results show the validity and feasibility of the proposed multi-modular system and its fault-tolerant control strategy.展开更多
The cluster DC voltage balancing control adopting zero-sequence voltage injection is appropriate for the starconnected cascaded H-bridge STATCOM because no zerosequence currents are generated in the three-phase three-...The cluster DC voltage balancing control adopting zero-sequence voltage injection is appropriate for the starconnected cascaded H-bridge STATCOM because no zerosequence currents are generated in the three-phase three-wire system.However,as the zero-sequence voltage is expressed in trigonometric form,traditional control methods involve many complicated operations,such as the square-root,trigonometric operations,and inverse tangent operations.To simplify cluster voltage balancing control,this paper converts the zero-sequence voltage to the dq frame in a DC representation by introducing a virtually orthogonal variable,and the DC components of the zero-sequence voltage in the dq frame are regulated linearly by proportional integral regulators,rather than being calculated from uneven active powers in traditional controls.This removes all complicated operations.Finally,this paper presents simulation and experimental results for a 400 V±7.5 kvar star-connected STATCOM,in balanced and unbalanced scenarios,thereby verifying the effectiveness of the proposed control.展开更多
The effect of pH on the electrochemical behaviour and passive film composition of 316 L stainless steel in alkaline solutions was studied using electrochemical measurements and a surface analysis method. The critical ...The effect of pH on the electrochemical behaviour and passive film composition of 316 L stainless steel in alkaline solutions was studied using electrochemical measurements and a surface analysis method. The critical pH of 12.5 was found for the conversion from pitting corrosion to the oxygen evolution reaction(OER). OER was kinetically faster than pitting corrosion when both reactions could occur, and OER could postpone pitting corrosion. This resulted in pitting being initiated during the reversing scan in the cyclic polarization at the critical pH. According to the X-ray photoelectron spectroscopy analysis, the content of Cr and Mo decreased with pH, while Fe content increased. This induced the degradation of the passive film, which resulted in the higher passive current densities under more alkaline conditions. The selective dissolution of Mo at high p H was found, which demonstrated that the addition of Mo in austenitic stainless steels might not be beneficial to the corrosion resistance of 316L in strong alkaline solutions.展开更多
The authors explored the thermal decomposition characteristics of perfluoroisobutyronitrile–carbon dioxide(C_(4)F_(7)N–CO_(2))gas mixture as eco-friendly dielectric medium.The main by-products and decomposition mech...The authors explored the thermal decomposition characteristics of perfluoroisobutyronitrile–carbon dioxide(C_(4)F_(7)N–CO_(2))gas mixture as eco-friendly dielectric medium.The main by-products and decomposition mechanism of C_(4)F_(7)N–CO_(2)gas mixture under different temperature and gas pressure conditions were revealed and analysed.It was found that the thermal decomposition of 6%C_(4)F_(7)N–94%CO_(2)gas mixture starts at about 350°C(0.15 MPa),producing C_(3)F_(6) and CO first.Some other characteristic by-products such as CF_(4),C_(2)F_(6),CF_(3)CN,COF_(2) and(CN)_(2) could also be detected at higher temperature.The yield of C_(3)F_(6),(CN)_(2) increased with the temperature(lower than 450℃)first and then decreased when it reached to 500℃.While the yield of CO,C3F8,COF_(2) and CF_(3)CN increased with temperature(350–550℃).The generation of CF_(4) and C_(2)F_(6) begins at temperatures higher than 500℃,which can be used as the feature component of severe overheating fault.The thermal decomposition amount and by-products yield of C_(4)F_(7)N–CO_(2)gas mixture slowed down with the increase of gas pressure,indicating that C_(4)F_(7)N–CO_(2)gas mixture is quite suitable used at high-pressure equipment,especially high-voltage devices such as gas insulated switchgear.展开更多
In this paper, a non-isolated stacked bidirectional DC-DC converter with zero-voltage-switching(ZVS) is introduced for the high step-up/step-down conversion systems. The extremely narrow turn-on and/or turn-off duty c...In this paper, a non-isolated stacked bidirectional DC-DC converter with zero-voltage-switching(ZVS) is introduced for the high step-up/step-down conversion systems. The extremely narrow turn-on and/or turn-off duty cycle existing in the conventional bidirectional buck-boost converters can be extended due to the stacked module configuration for large voltage conversion ratio applications. Furthermore, the switch voltage stress is halved because of the series connection of half bridge modules. The PWM plus phase-shift control strategy is employed, where the duty cycle is adopted to regulate the voltages between the input and output sides and the phaseshift angle is applied to achieve the power flow regulation.This decoupled control scheme can not only realize seamless bidirectional transition operation, but also achieve adaptive voltage balance for the power switches. In addition, ZVS soft-switching operation for all active switches is realized to minimize the switching losses. Finally, a prototype of 1 kW operating at 100 kHz is built and tested to demonstrate the effectiveness of the proposed converter and the control strategy.展开更多
With the development of unmanned aerial vehicle(UAV)technology,visible images are playing an important role in the maintenance of power systems.To achieve the shed breakage evaluation of composite insulators by UAV vi...With the development of unmanned aerial vehicle(UAV)technology,visible images are playing an important role in the maintenance of power systems.To achieve the shed breakage evaluation of composite insulators by UAV visible images,an intelligent fault assessment method is proposed.First,the composite insulators in visible light images are identified by Faster-RCNN.After image preprocessing,the image is enhanced and the noise is removed.Then,a canny operator is used to extract the edge of the sheds.An Improved Randomized Hough Transform(IRHT)is used to detect the ellipses in the edge image.The parameters of the detected ellipse,length of major axes and minor axes,center coordinates and deflection angle of major axes,are used to realize the segmentation of the composite insulator.Finally,the number of pixel points in the ellipse and the distance between the points and the ellipse boundary are used to judge whether there are breakage or cracks on the sheds.The area ratio of the breakage to the whole shed is calculated based on the number of pixel points inside the broken area.This method can be realized without a large amount of training dataset of the specific fault type and provides a technical basis for the online fault assessment of a composite insulator on overhead transmission lines.展开更多
The particle packed bed energy storage system has advantages such as low costs and wide temperature ranges,which can be combined with solar thermal power generation systems to solve the inherent volatility and discont...The particle packed bed energy storage system has advantages such as low costs and wide temperature ranges,which can be combined with solar thermal power generation systems to solve the inherent volatility and discontinuity of renewable energy.Developing new materials with low costs and excellent storage performances is one of the eternal research hotspots in the field of energy storage.This paper innovatively uses sintered ore particles as energy storage material and studies the effect of particle size on the airflow resistance characteristics,energy storage characteristics,and thermocline evolution characteristics of the packed bed through thermal energy storage experiments.The results indicate that for the particles in the macro scale,the smaller the particle,the lower the absolute permeability of the bed and the greater the airflow resistance.The packed bed with smaller particles has a larger specific surface area,larger bulk mass,and smaller bed voidage.Therefore,the packed beds with smaller particles have better thermocline characteristics,less irreversible loss,and can achieve higher thermal efficiency and higher exergy efficiency in the heat storage cycle.The cycle thermal efficiency in packed beds with 25-40 mm,16-25 mm,and 10-16 mm particles is 53.58%,56.27%,and 57.60%,respectively,and the cycle exergy efficiency is 61.81%,69.25%,and 74.13%,respectively.Moreover,this paper also studies the effect of discharging airflow rates on thermal storage performance.The experimental results indicate that suitable discharging strategies should be selected based on different heat demands.展开更多
文摘Due to the large and frequent static data interaction between the Electric Information Acquisition System and the external business systems,researching on using limited server sources to do an efficient task scheduling is becoming one of the key technologies of the unified interface platform.The information interaction structure of the unified interface platform is introduced.Task scheduling has been decomposed into two stages,task decomposition and task combination,based on the features(various types and dispersed)of large static data.The principle of the minimum variance of the subtasks data quantity is used to do the target task resolving in the decomposition stage.The thought of the Greedy Algorithm is used in the task combination.Breaking the target task with large static data into serval composed tasks with roughly same data quantity is effectively realized.Meanwhile,to avoid the situation of the GA falling into the local optimal solution,an improved combination method has been put forward.Moreover,the new method creates more average composed tasks and making the task scheduling more effective.Ultimately,the effectiveness of the proposed method is verified by the experimental data.
基金supported by the National Science Foundation for Distinguished Young Scholars of China under Grant(52125702).
文摘Due to the stochasticity of charging behaviors of electric vehicles(EVs),it is difficult to anticipate when charging load demand will be densely concentrated.If massive charging loads and the system peak profile appear at the same time,it may pose a risk to the reliable operation of power grids.For a system integrated with renewable energies,this risk can be much higher because of their unsteady power output.With load measurements more widely collected,this paper presents a data-driven framework to assess the reliability of a power grid considering charging EVs.Specifically,the diffusion estimator is firstly applied to estimate the probability density function of EV charging loads,which possesses both regional adaptivity and good boundary estimation performance.Then,charging load samples are produced through slice sampling.It is capable of sampling from irregularly-shaped distributions with high accuracy.The proposed approach is verified by the numerical results from the simulations on a modified IEEE 30-bus test system based on real measurement data.
基金supported by Science and Technology Project from Headquarters of State Grid Corporation of China:“Key technology development and application demonstration of high-confidence intelligent sensing and interactive integrated service system(52110418002V)”
文摘Mobile crowdsensing(MCS)is an emerging pattern which means task initiators attract mobile users sensing with their own devices by some platforms.MCS could exploit idle resources in low cost,while it has lots of flaws,which impede its developments.First,isolations between different MCS systems leads to wastage of social resources.What’s more,current MCS always operate in a centralized way,which causes it vulnerable and unbelievable.Blockchain is a promising technology which could supply a credible and transparent environment.This paper construct a blockchain based MCS market and design smart contract for its operation.In our design,platform breaks isolation by blockchain,task initiators and mobile users manage their tasks by smart contract and bargain price with distributed algorithm.By this way,resource could be exploited better,and the market could be more fair.What’s more,the paper analyzes Walrasian Equilibrium(WE)in the market,and details how to deploy MCS in blockchain.Evalution results shows that Equilibrium could be found.
文摘Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the newly launched carbon market due to its short history.Based on the idea of transfer learning,this paper proposes a novel price forecasting model,which utilizes the correlation between the new and mature markets.The model is firstly pretrained on large data of mature market by gated recurrent unit algorithm,and then fine-tuned by the target market samples.An integral framework,including complexity decomposition method for data pre-processing,sample entropy for feature selection,and support vector regression for result post-processing,is provided.In the empirical analysis of new Chinese market,the root mean square error,mean absolute error,mean absolute percentage error,and determination coefficient of the model are 0.529,0.476,0.717%and 0.501 respectively,proving its validity.
基金This work was supported by the National Natural Science Foundation of China(No.52007163)in part by China Postdoctoral Science Foundation(No.2020M671718).
文摘In this letter,a new formulation of Lebesgue integration is used to evaluate the probabilistic static security of power system operation with uncertain renewable energy generation.The risk of power flow solutions violating any pre-defined operation security limits is obtained by integrating a semialgebraic set composed of polynomials.With the high-order moments of historical data of renewable energy generation,the integration is reformulated as a generalized moment problem which is then relaxed to a semi-definite program(SDP).Finally,the effectiveness of the proposed method is verified by numerical examples.
文摘We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology for effectively measuring the transfer impedance of the high frequency current transformers(HFCTs).The proposed technology called pulse injection method obtains the system response under the excitation of the wide-band instantaneous pulse signal.Firstly,by studying the working principle of HFCTs,we summarize that the bandwidth of the selected signal acquisition device should be at least 100 MHz to ensure measurement accuracy.Secondly,Gauss pulse and square wave pulse are generated to determine the effects of different sources.The measurement results indicate that Gauss pulse is more suitable for pulse injection method,and the rise time should be under 10 ns to improve the starting frequency of oscillation distortion.Finally,the transfer impedance curves of five types of HFCTs are acquired by both pulse injection and traditional point-frequency methods.The measurement results show a remarkable consistency between two methods.However,pulse injection method requires the simpler operation and lias a higher resolution,obviously improving the measurement efficiency and bet ter displaying the details of the transfer impedance curves.
基金the National Key Research and Development Program of China(2017YFB0903000)the National Natural Science Foundation of China(No.51677116)Key Research and Development Program of Zhejiang Province under Grant 2019C01149,in part by the Science and Technology Project of State Grid Corporation of China under Grant 5211DS180031.
文摘In order to deal with frequency deviation andsupply-demand imbalance in active distribution power system, inthis paper a distributed under frequency load shedding (UFLS)strategy is proposed. Different from conventional centralizedUFLS schemes, no centralized master station gathering all thebuses’ information is required. Instead, each bus decides itsown load shedding amount by only relying on limited peer-topeer communication. However, such UFLS strategy may sufferfrom some unexpected cyber-attacks such as integrity attacksand denial of service (DoS) attack. The latter DoS attack aimsto degrade the system performance by jamming or breakingthe communication, which is of high probability to happen inpractical power system. To assess the vulnerability of proposeddistributed UFLS algorithm, the effect of DoS attack on distributed average consensus algorithm is theoretically derived,which indicates that the final consensus value can be estimatedby a given attack probability. It is also investigated that such DoSattack does harm to the load shedding amount and finally affectsthe system frequency performance in the active distributionpower system. Several case studies implemented on an IEEE33-bus active distribution power system are conducted to verifythe effectiveness of the theoretical findings and investigate thevulnerability of the considered power system.
基金supported by the National Natural Science Foundation of China(No.51777186)
文摘We first present a new multi-modular shunt active power filter system suitable for large-capacity compensation. Each module in the system has the same circuit topology, system functionality, and controller design, to achieve coordination control among the modules. The module's reference signals are obtained by multiplying the total reference signal by the respective distribution coefficient. Next, a novel fault-tolerant approach is proposed based on split-phase control in the a-b-c frame and real-time bus communication. When a phase fault occurs, instead of halting the whole module, the proposed strategy isolates only the faulted bridge arm, and then recalculates the distribution coefficients and transfers the compensation capacity to the same phases of the other normal modules, resulting in a continuous operation of the faulted module and optimization of the remaining usable power devices. Through steady-state analysis of the post-fault circuit, the system stability and control reliability are proven to be high enough to guarantee its engineering application value. Finally, a prototype is established and experimental results show the validity and feasibility of the proposed multi-modular system and its fault-tolerant control strategy.
基金supported by National Key R&D Program of China(No.2021YFB2401100)the Science and Technology Project of State Grid Corporation of China(No.5211DS22002C).
文摘The cluster DC voltage balancing control adopting zero-sequence voltage injection is appropriate for the starconnected cascaded H-bridge STATCOM because no zerosequence currents are generated in the three-phase three-wire system.However,as the zero-sequence voltage is expressed in trigonometric form,traditional control methods involve many complicated operations,such as the square-root,trigonometric operations,and inverse tangent operations.To simplify cluster voltage balancing control,this paper converts the zero-sequence voltage to the dq frame in a DC representation by introducing a virtually orthogonal variable,and the DC components of the zero-sequence voltage in the dq frame are regulated linearly by proportional integral regulators,rather than being calculated from uneven active powers in traditional controls.This removes all complicated operations.Finally,this paper presents simulation and experimental results for a 400 V±7.5 kvar star-connected STATCOM,in balanced and unbalanced scenarios,thereby verifying the effectiveness of the proposed control.
基金supported by the technology projects of State Grid Corporation (No. 52110417000N)the National Science and Technology Major Project (No. 2016ZX05028004)
文摘The effect of pH on the electrochemical behaviour and passive film composition of 316 L stainless steel in alkaline solutions was studied using electrochemical measurements and a surface analysis method. The critical pH of 12.5 was found for the conversion from pitting corrosion to the oxygen evolution reaction(OER). OER was kinetically faster than pitting corrosion when both reactions could occur, and OER could postpone pitting corrosion. This resulted in pitting being initiated during the reversing scan in the cyclic polarization at the critical pH. According to the X-ray photoelectron spectroscopy analysis, the content of Cr and Mo decreased with pH, while Fe content increased. This induced the degradation of the passive film, which resulted in the higher passive current densities under more alkaline conditions. The selective dissolution of Mo at high p H was found, which demonstrated that the addition of Mo in austenitic stainless steels might not be beneficial to the corrosion resistance of 316L in strong alkaline solutions.
基金supported by the National Natural Science Foundation of China(Nos.51707137 and 51877157)the Science and Technology Projects of State Grid Co.,Ltd.(No.5200-201919063A-0-0-00).
文摘The authors explored the thermal decomposition characteristics of perfluoroisobutyronitrile–carbon dioxide(C_(4)F_(7)N–CO_(2))gas mixture as eco-friendly dielectric medium.The main by-products and decomposition mechanism of C_(4)F_(7)N–CO_(2)gas mixture under different temperature and gas pressure conditions were revealed and analysed.It was found that the thermal decomposition of 6%C_(4)F_(7)N–94%CO_(2)gas mixture starts at about 350°C(0.15 MPa),producing C_(3)F_(6) and CO first.Some other characteristic by-products such as CF_(4),C_(2)F_(6),CF_(3)CN,COF_(2) and(CN)_(2) could also be detected at higher temperature.The yield of C_(3)F_(6),(CN)_(2) increased with the temperature(lower than 450℃)first and then decreased when it reached to 500℃.While the yield of CO,C3F8,COF_(2) and CF_(3)CN increased with temperature(350–550℃).The generation of CF_(4) and C_(2)F_(6) begins at temperatures higher than 500℃,which can be used as the feature component of severe overheating fault.The thermal decomposition amount and by-products yield of C_(4)F_(7)N–CO_(2)gas mixture slowed down with the increase of gas pressure,indicating that C_(4)F_(7)N–CO_(2)gas mixture is quite suitable used at high-pressure equipment,especially high-voltage devices such as gas insulated switchgear.
基金supported by National Natural Science Foundation of China(No.51277195)
文摘In this paper, a non-isolated stacked bidirectional DC-DC converter with zero-voltage-switching(ZVS) is introduced for the high step-up/step-down conversion systems. The extremely narrow turn-on and/or turn-off duty cycle existing in the conventional bidirectional buck-boost converters can be extended due to the stacked module configuration for large voltage conversion ratio applications. Furthermore, the switch voltage stress is halved because of the series connection of half bridge modules. The PWM plus phase-shift control strategy is employed, where the duty cycle is adopted to regulate the voltages between the input and output sides and the phaseshift angle is applied to achieve the power flow regulation.This decoupled control scheme can not only realize seamless bidirectional transition operation, but also achieve adaptive voltage balance for the power switches. In addition, ZVS soft-switching operation for all active switches is realized to minimize the switching losses. Finally, a prototype of 1 kW operating at 100 kHz is built and tested to demonstrate the effectiveness of the proposed converter and the control strategy.
文摘With the development of unmanned aerial vehicle(UAV)technology,visible images are playing an important role in the maintenance of power systems.To achieve the shed breakage evaluation of composite insulators by UAV visible images,an intelligent fault assessment method is proposed.First,the composite insulators in visible light images are identified by Faster-RCNN.After image preprocessing,the image is enhanced and the noise is removed.Then,a canny operator is used to extract the edge of the sheds.An Improved Randomized Hough Transform(IRHT)is used to detect the ellipses in the edge image.The parameters of the detected ellipse,length of major axes and minor axes,center coordinates and deflection angle of major axes,are used to realize the segmentation of the composite insulator.Finally,the number of pixel points in the ellipse and the distance between the points and the ellipse boundary are used to judge whether there are breakage or cracks on the sheds.The area ratio of the breakage to the whole shed is calculated based on the number of pixel points inside the broken area.This method can be realized without a large amount of training dataset of the specific fault type and provides a technical basis for the online fault assessment of a composite insulator on overhead transmission lines.
基金supported by the Science and Technology Project of State Grid Corporation of China(Grant No.5400-202419199A-1-1-ZN)。
文摘The particle packed bed energy storage system has advantages such as low costs and wide temperature ranges,which can be combined with solar thermal power generation systems to solve the inherent volatility and discontinuity of renewable energy.Developing new materials with low costs and excellent storage performances is one of the eternal research hotspots in the field of energy storage.This paper innovatively uses sintered ore particles as energy storage material and studies the effect of particle size on the airflow resistance characteristics,energy storage characteristics,and thermocline evolution characteristics of the packed bed through thermal energy storage experiments.The results indicate that for the particles in the macro scale,the smaller the particle,the lower the absolute permeability of the bed and the greater the airflow resistance.The packed bed with smaller particles has a larger specific surface area,larger bulk mass,and smaller bed voidage.Therefore,the packed beds with smaller particles have better thermocline characteristics,less irreversible loss,and can achieve higher thermal efficiency and higher exergy efficiency in the heat storage cycle.The cycle thermal efficiency in packed beds with 25-40 mm,16-25 mm,and 10-16 mm particles is 53.58%,56.27%,and 57.60%,respectively,and the cycle exergy efficiency is 61.81%,69.25%,and 74.13%,respectively.Moreover,this paper also studies the effect of discharging airflow rates on thermal storage performance.The experimental results indicate that suitable discharging strategies should be selected based on different heat demands.