In this paper, we describe the generation, detection, and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching. A non-return-to-zero (NRZ) FSK signal is generated by ...In this paper, we describe the generation, detection, and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching. A non-return-to-zero (NRZ) FSK signal is generated by using two continuous-wave (CW) lasers, one Mach-Zehnder modulator (MZM), and one Mach-Zehnder delay interferometer (MZDI). An RZ-FSK signal is generated by cascading a dual-arm MZM, which is driven by a sinusoidal voltage at half the bit rate. Demodulation can be achieved on 1 bit rate through one MZDI or an array waveguide grating (AWG) demultiplexer with balanced detection. We perform numerical simulation on two types of frequency modulation schemes using MZM or PM, and we determine the effect of frequency tone spacing (FTS) on the generated FSK signal. In the proposed scheme, a novel frequency modulation format has transmission advantages compared with traditional modulation formats such as RZ and differential phase-shift keying (DPSK), under varying dispersion management. The performance of an RZ-FSK signal in a 4 x 40 Gb/s WDM transmission system is discussed. We experiment on transparent wavelength conversion based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) and in a highly nonlinear dispersion shifted fiber (HNDSF) for a 40 Gb/s RZ-FSK signal. The feasibility of all-optical signal processing of a high-speed RZ-FSK signal is confirmed. We also determine the receiver power penalty for the RZ-FSK signal after a 100 km standard single-mode fiber (SMF) transmission link with matching dispersion compensating fiber (DCF), under the post-compensation management scheme. Because the frequency modulation format is orthogonal to intensity modulation and vector modulation (polarization shift keying), it can be used in the context of the combined modulation format to decrease the data rate or enhance the symbol rate. It can also be used in orthogonal label-switching as the modulation format for the payload or the label. As an example, we propose a simple orthogonal optical label switching technique based on 40 Gb/s FSK payload and 2.5 Gb/s intensity modulated (IM) label.展开更多
Scanning electron microscope(SEM)metrology is critical in semiconductor manufacturing for patterning process quality assessment and monitoring.Besides feature width and feature-feature space dimension measurements fro...Scanning electron microscope(SEM)metrology is critical in semiconductor manufacturing for patterning process quality assessment and monitoring.Besides feature width and feature-feature space dimension measurements from critical dimension SEM(CDSEM)images,visual inspection of SEM image also offers rich information on the quality of patterning.However,visual inspection alone leaves considerable room of ambiguity regarding patterning quality.To narrow the room of ambiguity and to obtain more statistically quantitative information on patterning quality,SEM-image contours are often extracted to serve such purposes.From contours,important information such as critical dimension and resist sidewall angle at any location can be estimated.Those geometrical information can be used for optical proximity correction(OPC)model verification and lithography hotspot detection,etc.Classical contour extraction algorithms based on local information have insufficient capability in dealing with noisy and low contrast images.To achieve reliable contours from noisy and low contrast images,information beyond local should be made use of as much as possible.In this regard,deep convolutional neural network(DCNN)has proven its great capability,as manifested in various computer vision tasks.Taking the full advantages of this maturing technology,we have designed a DCNN network and applied it to the task of extracting contours from noisy and low contrast SEM images.It turns out that the model is capable of separating the resist top and bottom contours reliably.In addition,the model does not generate false contours,it also can suppress the generation of broken contours when ambiguous area for contour extraction is small and non-detrimental.With advanced image alignment algorithm with sub-pixel accuracy,contours from different exposure fields of same process condition can be superposed to estimate process variation band,furthermore,stochastic effect induced edge placement variation statistics can easily be inferred from the extracted contours.展开更多
This paper aims to explore RLC equivalent circuit synthesis method forreduced-order models of interconnect circuits obtained by Krylov subspace basedmodel order reduction (MOR) methods. To guarantee pure RLC equivalen...This paper aims to explore RLC equivalent circuit synthesis method forreduced-order models of interconnect circuits obtained by Krylov subspace basedmodel order reduction (MOR) methods. To guarantee pure RLC equivalent circuitscan be synthesized, both the structures of input and output incidence matrices and theblock structure of the circuit matrices should be preserved in the reduced-order models.Block structure preserving MOR methods have been well established. In this paper,we propose an embeddable Input-Output structure Preserving Order Reduction(IOPOR) technique to further preserve the structures of input and output incidencematrices. By combining block structure preserving MOR methods and IOPOR technique,we develop an RLC equivalent circuit synthesis method RLCSYN (RLC SYNthesis).Inline diagonalization and regularization techniques are specifically proposedto enhance the robustness of inductance synthesis. The pure RLC model, high modelingaccuracy, passivity guaranteed property and SPICE simulation robustness makeRLCSYN more applicable in interconnect analysis, either for digital IC design ormixedsignal IC simulation.展开更多
基金supported by the National High Technology Research and Development Program(973)of China(Grant No.2010CB328300)National Natural Science Foundation of China(No.61107064,No.61177071,No.600837004,No.60777010)+1 种基金Doctoral Fund of Ministry of Education,Open Fund of State Key Lab of ASIC&System(No.11MS009)Pujiang Fund and Shuguang fund
文摘In this paper, we describe the generation, detection, and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching. A non-return-to-zero (NRZ) FSK signal is generated by using two continuous-wave (CW) lasers, one Mach-Zehnder modulator (MZM), and one Mach-Zehnder delay interferometer (MZDI). An RZ-FSK signal is generated by cascading a dual-arm MZM, which is driven by a sinusoidal voltage at half the bit rate. Demodulation can be achieved on 1 bit rate through one MZDI or an array waveguide grating (AWG) demultiplexer with balanced detection. We perform numerical simulation on two types of frequency modulation schemes using MZM or PM, and we determine the effect of frequency tone spacing (FTS) on the generated FSK signal. In the proposed scheme, a novel frequency modulation format has transmission advantages compared with traditional modulation formats such as RZ and differential phase-shift keying (DPSK), under varying dispersion management. The performance of an RZ-FSK signal in a 4 x 40 Gb/s WDM transmission system is discussed. We experiment on transparent wavelength conversion based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) and in a highly nonlinear dispersion shifted fiber (HNDSF) for a 40 Gb/s RZ-FSK signal. The feasibility of all-optical signal processing of a high-speed RZ-FSK signal is confirmed. We also determine the receiver power penalty for the RZ-FSK signal after a 100 km standard single-mode fiber (SMF) transmission link with matching dispersion compensating fiber (DCF), under the post-compensation management scheme. Because the frequency modulation format is orthogonal to intensity modulation and vector modulation (polarization shift keying), it can be used in the context of the combined modulation format to decrease the data rate or enhance the symbol rate. It can also be used in orthogonal label-switching as the modulation format for the payload or the label. As an example, we propose a simple orthogonal optical label switching technique based on 40 Gb/s FSK payload and 2.5 Gb/s intensity modulated (IM) label.
文摘Scanning electron microscope(SEM)metrology is critical in semiconductor manufacturing for patterning process quality assessment and monitoring.Besides feature width and feature-feature space dimension measurements from critical dimension SEM(CDSEM)images,visual inspection of SEM image also offers rich information on the quality of patterning.However,visual inspection alone leaves considerable room of ambiguity regarding patterning quality.To narrow the room of ambiguity and to obtain more statistically quantitative information on patterning quality,SEM-image contours are often extracted to serve such purposes.From contours,important information such as critical dimension and resist sidewall angle at any location can be estimated.Those geometrical information can be used for optical proximity correction(OPC)model verification and lithography hotspot detection,etc.Classical contour extraction algorithms based on local information have insufficient capability in dealing with noisy and low contrast images.To achieve reliable contours from noisy and low contrast images,information beyond local should be made use of as much as possible.In this regard,deep convolutional neural network(DCNN)has proven its great capability,as manifested in various computer vision tasks.Taking the full advantages of this maturing technology,we have designed a DCNN network and applied it to the task of extracting contours from noisy and low contrast SEM images.It turns out that the model is capable of separating the resist top and bottom contours reliably.In addition,the model does not generate false contours,it also can suppress the generation of broken contours when ambiguous area for contour extraction is small and non-detrimental.With advanced image alignment algorithm with sub-pixel accuracy,contours from different exposure fields of same process condition can be superposed to estimate process variation band,furthermore,stochastic effect induced edge placement variation statistics can easily be inferred from the extracted contours.
基金NSFC research project 90307017 and 60676018partly by the National Basic Research Program of China under the grant 2005CB321701+2 种基金partly by Cross-Century Outstanding Scholar’s fund of Ministry of Education of China,partly by the doctoral program foundation of Ministry of Education of China 20050246082partly by Shanghai Dawn Project 200601partly by the National Science Foundation(NSF)under Grant CCR-0306298.
文摘This paper aims to explore RLC equivalent circuit synthesis method forreduced-order models of interconnect circuits obtained by Krylov subspace basedmodel order reduction (MOR) methods. To guarantee pure RLC equivalent circuitscan be synthesized, both the structures of input and output incidence matrices and theblock structure of the circuit matrices should be preserved in the reduced-order models.Block structure preserving MOR methods have been well established. In this paper,we propose an embeddable Input-Output structure Preserving Order Reduction(IOPOR) technique to further preserve the structures of input and output incidencematrices. By combining block structure preserving MOR methods and IOPOR technique,we develop an RLC equivalent circuit synthesis method RLCSYN (RLC SYNthesis).Inline diagonalization and regularization techniques are specifically proposedto enhance the robustness of inductance synthesis. The pure RLC model, high modelingaccuracy, passivity guaranteed property and SPICE simulation robustness makeRLCSYN more applicable in interconnect analysis, either for digital IC design ormixedsignal IC simulation.