To investigate the zonal disintegration form of the surrounding rock in deep tunnels,model tests were performed in the simulation set-up of fracture mechanism and support technology of surrounding rock in deep tunnel....To investigate the zonal disintegration form of the surrounding rock in deep tunnels,model tests were performed in the simulation set-up of fracture mechanism and support technology of surrounding rock in deep tunnel.The test results illustrate that the first fracture of the surrounding rock occurred at the intersection of the tunnel floor and the side wall.After more serious destruction,the side wall and the vault were destroyed.Although the fracture width of each surrounding rock mass was distinct,they were relatively uniform with a nearly continuous fracture form.The width of the split bodies of the model tunnels(i.e.,the annular zonal disintegration area)developed with an increasing load.It was observed from the fitting curves of the data that all radial strain values of the surrounding rock were more symmetric with a smooth fitting curve,and the maximum value occurred near the tunnel wall before reducing instantly.The circumferential strain values were dispersed and the data were inconsistent with the fitting curve,which caused some data to be unreliable.The phenomenon of zonal disintegration was primarily caused by radial tension strain of the surrounding rock.This phenomenon would not extend indefinitely as the rupture range would be limited to a certain extent,because the maximum radial tension strain of the surrounding rock was less than the limiting value.展开更多
This study aims to make full use of the agricultural waste peanut shells to lower material costs and achieve cleaner production at the same time.Cellulose nanofibrils(CNF)extracted from peanut shells were mixed with a...This study aims to make full use of the agricultural waste peanut shells to lower material costs and achieve cleaner production at the same time.Cellulose nanofibrils(CNF)extracted from peanut shells were mixed with acrylic acid(AA)and dimethyl diallyl ammonium chloride(DMDAAC)to prepare a new type of capsule core(dust suppressant).Then,the self-adaptive AA-DM-CNF/CA microcapsules were prepared under the action of calcium alginate.The infrared spectroscopy and X-ray diffraction analysis results suggest that AA,DMDAAC and CNF have experienced graft copolymerization which leads to the formation of an amorphous structure.The scanning electron microscopy analysis results demonstrate that the internal dust suppressant can expand and break the wall after absorbing water,featuring a self-adaptive function.Meanwhile,the laser particle size analysis results show that the microcapsules,inside which the encapsulated dust suppressant can be observed clearly,maintain a good shape.The product performance experimental results reveal that the capsule core and the capsule wall achieve synergistic dust suppression,thus lengthening the dust suppression time.The product boasts good dust suppression,weather resistance,degradation and synergistic combustion performances.Moreover,this study,as the first report on the development and analysis of dust-suppressing microcapsules,fills in the research gap on the reaction mechanism between dust-suppressing microcapsules and coal by MS simulation.The proposed AA-DM-CNF/CA dust-suppressing microcapsules can effectively lower the dust concentration in the space and protect the physical and mental health of coal workers.In general,this research provides a new insight into the structure control and performance enhancement of dust suppressants.Expanding the application range of microcapsules is of crucial economic and social benefits.展开更多
In order to effectively monitor the concealed fault activation process in excavation activities, based on the actual condition of a working face containing faults with high outburst danger in Xin Zhuangzi mine in Huai...In order to effectively monitor the concealed fault activation process in excavation activities, based on the actual condition of a working face containing faults with high outburst danger in Xin Zhuangzi mine in Huainan, China, we carried out all-side tracking and monitoring on the fault activation process and development trend in excavation activities by establishing a microseismic monitoring system. The results show that excavation activities have a rather great influence on the fault activation. With the working face approaching the fault, the fault activation builds up and the outburst danger increases; when the excavation activities finishes, the fault activation tends to be stable. The number of microseismic events are corresponding to the intensity of fault activation, and the distribution rules of microseismic events can effectively determine the fault occurrence in the mine. Microseismic monitoring technique is accurate in terms of detecting geologic tectonic activities, such as fault activations lying ahead during excavation activities. By utilizing this technique, we can determine outburst danger in excavation activities in time and accordingly take effective countermeasures to prevent and reduce the occurrence of outburst accidents.展开更多
基金This work was financially supported by the Chinese National key R&D project(No.2016YFC0801402)the Chinese National Natural Science Foundation Project(No.51627804).
文摘To investigate the zonal disintegration form of the surrounding rock in deep tunnels,model tests were performed in the simulation set-up of fracture mechanism and support technology of surrounding rock in deep tunnel.The test results illustrate that the first fracture of the surrounding rock occurred at the intersection of the tunnel floor and the side wall.After more serious destruction,the side wall and the vault were destroyed.Although the fracture width of each surrounding rock mass was distinct,they were relatively uniform with a nearly continuous fracture form.The width of the split bodies of the model tunnels(i.e.,the annular zonal disintegration area)developed with an increasing load.It was observed from the fitting curves of the data that all radial strain values of the surrounding rock were more symmetric with a smooth fitting curve,and the maximum value occurred near the tunnel wall before reducing instantly.The circumferential strain values were dispersed and the data were inconsistent with the fitting curve,which caused some data to be unreliable.The phenomenon of zonal disintegration was primarily caused by radial tension strain of the surrounding rock.This phenomenon would not extend indefinitely as the rupture range would be limited to a certain extent,because the maximum radial tension strain of the surrounding rock was less than the limiting value.
基金supported by the National Key R&D Program of China(No.2022YFC2503201)the National Natural Science Foundation of China(Nos.52274215,52004150 and 52074012)+2 种基金the Qingchuang Science and Technology Project of Universities in Shandong Province,China(No.2019KJH005)the Outstanding Young Talents Project of Shandong University of Science and Technology(No.SKR22-5-01)the China Scholarship Council(No.202108370223).
文摘This study aims to make full use of the agricultural waste peanut shells to lower material costs and achieve cleaner production at the same time.Cellulose nanofibrils(CNF)extracted from peanut shells were mixed with acrylic acid(AA)and dimethyl diallyl ammonium chloride(DMDAAC)to prepare a new type of capsule core(dust suppressant).Then,the self-adaptive AA-DM-CNF/CA microcapsules were prepared under the action of calcium alginate.The infrared spectroscopy and X-ray diffraction analysis results suggest that AA,DMDAAC and CNF have experienced graft copolymerization which leads to the formation of an amorphous structure.The scanning electron microscopy analysis results demonstrate that the internal dust suppressant can expand and break the wall after absorbing water,featuring a self-adaptive function.Meanwhile,the laser particle size analysis results show that the microcapsules,inside which the encapsulated dust suppressant can be observed clearly,maintain a good shape.The product performance experimental results reveal that the capsule core and the capsule wall achieve synergistic dust suppression,thus lengthening the dust suppression time.The product boasts good dust suppression,weather resistance,degradation and synergistic combustion performances.Moreover,this study,as the first report on the development and analysis of dust-suppressing microcapsules,fills in the research gap on the reaction mechanism between dust-suppressing microcapsules and coal by MS simulation.The proposed AA-DM-CNF/CA dust-suppressing microcapsules can effectively lower the dust concentration in the space and protect the physical and mental health of coal workers.In general,this research provides a new insight into the structure control and performance enhancement of dust suppressants.Expanding the application range of microcapsules is of crucial economic and social benefits.
基金provided by the National Natural Science Foundation of China(No.51674189,51304154,51327007)the Youth Science and technique new star of Shaanxi Province(No.2016KJXX-37)the Scientific research plan of Shaanxi Education Department(No.16JK1487),are gratefully acknowledged
文摘In order to effectively monitor the concealed fault activation process in excavation activities, based on the actual condition of a working face containing faults with high outburst danger in Xin Zhuangzi mine in Huainan, China, we carried out all-side tracking and monitoring on the fault activation process and development trend in excavation activities by establishing a microseismic monitoring system. The results show that excavation activities have a rather great influence on the fault activation. With the working face approaching the fault, the fault activation builds up and the outburst danger increases; when the excavation activities finishes, the fault activation tends to be stable. The number of microseismic events are corresponding to the intensity of fault activation, and the distribution rules of microseismic events can effectively determine the fault occurrence in the mine. Microseismic monitoring technique is accurate in terms of detecting geologic tectonic activities, such as fault activations lying ahead during excavation activities. By utilizing this technique, we can determine outburst danger in excavation activities in time and accordingly take effective countermeasures to prevent and reduce the occurrence of outburst accidents.