The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi...The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.展开更多
The soil-rock mixture(SRM) is highly heterogeneous. Before carrying out numerical analysis,a structure model should be generated. A reliable way to obtain such structure is by generating random aggregate structure bas...The soil-rock mixture(SRM) is highly heterogeneous. Before carrying out numerical analysis,a structure model should be generated. A reliable way to obtain such structure is by generating random aggregate structure based on random sequential addition(RSA). The classical RSA is neither efficient nor robust since valid positions to place new inclusions are formulated by trial, which involves repetitive overlapping tests. In this paper, the algorithm of Entrance block between block A and B(EAB)is synergized with background mesh to redesign RSA so that permissible positions to place new inclusions can be predicted,resulting in dramatic improvement in efficiency and robustness.展开更多
The critical solid fraction(ϕJ),which marks the transition between the solid and liquid phases in the jamming diagram,is influenced by several factors.In this study,the dependency ofϕJ on strain rate and boundary cond...The critical solid fraction(ϕJ),which marks the transition between the solid and liquid phases in the jamming diagram,is influenced by several factors.In this study,the dependency ofϕJ on strain rate and boundary conditions is examined through discrete element method simulations considering a frictionless polydisperse granular system.Different approaches are used to determineϕJ.The observed boundary effect is due to the nonuniform solid fraction distribution induced by the clustering of particles close to rigid-wall boundaries at high compression rates.The solid fraction distribution within the sample in the rigid-wall simulations approaches that in the periodic-boundary simulations as the compression rate decreases.With increasing compression rate,the major force transmission network contains fewer mechanically stable particles and a less stable force transmission network.This causes jamming of the granular assembly at a lower solid fraction.These force transmission networks,however,are fragile and disintegrate quickly upon relaxation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52278407 and 52378407)the China Postdoctoral Science Foundation(Grant No.2023M732670)the support by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation.
文摘The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2014CB047100)the National Natural Science Foundation of China(Grant Nos.11572009,51538001 and 51609240)
文摘The soil-rock mixture(SRM) is highly heterogeneous. Before carrying out numerical analysis,a structure model should be generated. A reliable way to obtain such structure is by generating random aggregate structure based on random sequential addition(RSA). The classical RSA is neither efficient nor robust since valid positions to place new inclusions are formulated by trial, which involves repetitive overlapping tests. In this paper, the algorithm of Entrance block between block A and B(EAB)is synergized with background mesh to redesign RSA so that permissible positions to place new inclusions can be predicted,resulting in dramatic improvement in efficiency and robustness.
基金This work was supported by the National Natural Science Foun-dation of China(grant numbers 41672262,41877227)the National Key Research and Development Program of China(grantnumber 2017YFC0806004).
文摘The critical solid fraction(ϕJ),which marks the transition between the solid and liquid phases in the jamming diagram,is influenced by several factors.In this study,the dependency ofϕJ on strain rate and boundary conditions is examined through discrete element method simulations considering a frictionless polydisperse granular system.Different approaches are used to determineϕJ.The observed boundary effect is due to the nonuniform solid fraction distribution induced by the clustering of particles close to rigid-wall boundaries at high compression rates.The solid fraction distribution within the sample in the rigid-wall simulations approaches that in the periodic-boundary simulations as the compression rate decreases.With increasing compression rate,the major force transmission network contains fewer mechanically stable particles and a less stable force transmission network.This causes jamming of the granular assembly at a lower solid fraction.These force transmission networks,however,are fragile and disintegrate quickly upon relaxation.