期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Field study of seasonal thermal comfort and adaptive behavior for occupants in residential buildings of Xi’an,China 被引量:3
1
作者 WEI Na ZHENG Wu-xing +3 位作者 ZHANG Nan ZHAO Sheng-kai ZHAI Yong-chao YANG Liu 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2403-2414,共12页
The study aims to investigate the thermal comfort requirements in residential buildings and to establish an adaptive thermal comfort model in the cold zone of China.A year-long field study was conducted in residential... The study aims to investigate the thermal comfort requirements in residential buildings and to establish an adaptive thermal comfort model in the cold zone of China.A year-long field study was conducted in residential buildings in Xi’an,China.A total of 2069 valid questionnaires,along with indoor environmental parameters were obtained.The results indicated occupants’thermal comfort requirements varied with seasons.The neutral temperatures were 17.9,26.1(highest),25.2,and 17.4℃(lowest),and preferred temperatures were 23.2,25.6(highest),24.8,and 22.4℃(lowest),respectively for spring,summer,autumn,and winter.The neutral temperature and preferred temperature in autumn are close to the neutral temperature in summer,while the neutral temperature and preferred temperature in spring are close to that in winter.Besides,the 80%and 90%acceptable temperature ranges,adaptive thermal comfort models,and thermal comfort zones for each season were established.Human’s adaptability is related to his/her thermal experience of the current season and the previous season.Therefore,compared with the traditional year-round adaptive thermal comfort model,seasonal models can better reflect seasonal variations of human adaptation.This study provides fundamental knowledge of the thermal comfort demand for people in this region. 展开更多
关键词 thermal comfort seasonal variation adaptive thermal comfort model energy saving residential buildings
在线阅读 下载PDF
Country-level meteorological parameters for building energy efficiency in China 被引量:3
2
作者 LIU Yan WANG Shang-yu +2 位作者 CAO Qi-meng LU Mei YANG Liu 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2301-2316,共16页
Accurate basic data are necessary to support performance-based design for achieving carbon peak and carbon neutral targets in the building sector.Meteorological parameters are the prerequisites of building thermal eng... Accurate basic data are necessary to support performance-based design for achieving carbon peak and carbon neutral targets in the building sector.Meteorological parameters are the prerequisites of building thermal engineering design,heating ventilation and air conditioning design,and energy consumption simulations.Focusing on the key issues such as low spatial coverage and the lack of daily or higher time resolution data,daily and hourly models of the surface meteorological data and solar radiation were established and evaluated.Surface meteorological data and solar radiation data were generated for 1019 cities and towns in China from 1988 to 2017.The data were carefully compared,and the accuracy was proved to be high.All the meteorological parameters can be assessed in the building sector via a sharing platform.Then,country-level meteorological parameters were developed for energy-efficient building assessment in China,based on actual meteorological data in the present study.This set of meteorological parameters may facilitate engineering applications as well as allowing the updating and expansion of relevant building energy efficiency standards.The study was supported by the National Science and Technology Major Project of China during the 13th Five-Year Plan Period,named Fundamental parameters on building energy efficiency in China,comprising of 15 top-ranking universities and institutions in China. 展开更多
关键词 building energy efficiency building thermal engineering heating ventilation and air conditioning meteorological parameters solar radiation
在线阅读 下载PDF
Can hypobaric hypoxia affect human thermal comfort?An experimental study in Tibet,China 被引量:3
3
作者 DUAN Guan-nan SONG Cong +2 位作者 LIU Yan-feng WANG Deng-jia CAO Rui-xuan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2388-2402,共15页
Hypobaric hypoxia is the main environmental feature of the Tibetan plateau which would influence the efficiency of human metabolic heat production and the ability of thermal regulation.In order to understand the influ... Hypobaric hypoxia is the main environmental feature of the Tibetan plateau which would influence the efficiency of human metabolic heat production and the ability of thermal regulation.In order to understand the influence of the hypoxic environment on the plateau on the thermal comfort of short-term sojourners in Tibet,China,oxygen generators were used to create oxygen-enriched environments,and physiological and psychological reactions of subjects were compared under different oxygen partial pressures(p_(O_(2)))and air temperatures(t_(a)).The results showed that subjects’thermal sensation,thermal comfort and mean skin temperature decreased with a decrease in the oxygen partial pressure.When t_(a)=17℃,the influence of oxygen partial pressure was more pronounced,compared to p_(O_(2))=16.4 kPa,the thermal sensation of subjects under p_(O_(2))=13.7 kPa decreased by 33%.The rate of subjects feeling comfortable decreased by 25%,and the mean skin temperature decreased by 0.7℃.The hypoxic environment of the plateau exacerbates human discomfort.Therefore,it is necessary to fully understand the actual thermal requirements of sojourners in Tibet,China.The results of this study would have implications for a better understanding of thermal comfort characteristics in the hypoxia environment in plateau. 展开更多
关键词 thermal comfort HYPOXIA high altitude oxygen enrichment physiological responses short-term sojourner
在线阅读 下载PDF
Investigation of Sulfate Attack Resistance of Shotcrete under Dry-wet Cycles 被引量:1
4
作者 王家滨 牛荻涛 +1 位作者 MA Rui ZHANG Yongli 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1329-1335,共7页
In order to research the sulfate attack resistance of shotcrete, the sulfate attack of shotcrete in the presence and absence of steel fiber was experimentally studied by using dry-wet cycle method. Meanwhile, compared... In order to research the sulfate attack resistance of shotcrete, the sulfate attack of shotcrete in the presence and absence of steel fiber was experimentally studied by using dry-wet cycle method. Meanwhile, compared with ordinary concrete by the same mixture, the difference of sulfate attack resistance of shotcrete was studied. The experimental results showed that, with dry-wet cycles increasing, the changes of loss rate of relative dynamic elastic modulus and mass loss rate of specimens included three stages: initial descent stage, stable stage, and rapid descent stage, respectively. However, the changes of mechanical properties first increased and then decreased. Furthermore, the corrosion products of shotcrete after sulfate attack were observed by using the method of XRD, thermal analysis, and SEM, respectively, and the failure mode of shotcrete turned from ettringite destruction to ettringite-gypsum comprehensive failure. Meanwhile, the contents of ettringite and gypsum increased with increasing dry-wet cycle. Simultaneously, the stratified powders drilled from shotcrete under 150's dry-wet cycle were analyzed for the mineral phase composition and thermal analysis. With the drywet cycle increasing, the content of ettringite first increased and then decreased and tended to stable. However, the determination of gypsum decreased gradually and even to 0 when the depth was more than 12 mm. 展开更多
关键词 tunnel engineering durability shotcrete sulfate attack dry-wet cycles
在线阅读 下载PDF
Effects of Different Calcining Temperatures on the Properties of Ceramsite Prepared by High-carbon Gasification Slag
5
作者 WU Feng LI Hui +1 位作者 LI Taizhi MA Xudong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期292-298,共7页
The structure and characteristics of high-performance lightweight aggregates produced by high-carbon gasification slag were investigated by X-ray diffraction,scanning electron microscopy,thermogravimetry/differential ... The structure and characteristics of high-performance lightweight aggregates produced by high-carbon gasification slag were investigated by X-ray diffraction,scanning electron microscopy,thermogravimetry/differential thermogravimetr,differential scanning calorimetry-Fourier transform infrared,and mercury intrusion porosimetry,respectively.The experimental results show that the ceramsite undergoes two weightless stages in the calcining process.With the increase in the calcining temperature,a large number of pores are formed inside the ceramsite,its structure becomes denser,but the calcining temperature band of the ceramsite becomes narrow.The crystalline phase of the ceramsite changes at different calcining temperatures and the mineral phase changes from the earlieralbite,quartz,oligoclase,hematite,etc,to a silica-aluminum-rich glass phase.The 1130℃ is a more suitable calcining temperature,and the cylinder compressive strength of ceramics is 11.59 MPa,the packing density,apparent density,porosity,and water absorption are 939.11 kg/m^(3),1643.75 kg/m^(3),28.11%,and 10.35%,respectively,which can meet the standards for high-strength lightweight aggregates. 展开更多
关键词 high-carbon gasification slag CERAMSITE CONCRETE physical property
在线阅读 下载PDF
CFD simulation of pumping ventilation in a three-story isolated building with internal partitioning:Effects of partition widths,heights and locations
6
作者 Huai-Yu Zhong Jie Sun +6 位作者 Chao Lin Song-Heng Wu Jin Shang Hideki Kikumoto Fu-Ping Qian Carlos Jimenez-Bescos Fu-Yun Zhao 《Building Simulation》 SCIE EI CSCD 2024年第2期267-284,共18页
Pumping ventilation(PV),a special single-sided ventilation(SSV),has been certified as an effective strategy to improve the air exchange rate of SSV.However,most studies targeted on the single space,and few studies hav... Pumping ventilation(PV),a special single-sided ventilation(SSV),has been certified as an effective strategy to improve the air exchange rate of SSV.However,most studies targeted on the single space,and few studies have been focused on the effect of internal partitioning on PV.This paper aims to evaluate the ventilation performance of PV influenced by different configurations of internal partitioning.Computational fluid dynamics(CFD)simulation was used to predict the flow fields and ventilation rates.The width(w/H),height(h/H)and location(d/H)are the three main internal partition parameters considered in this study.The simulation results showed that the total,mean and fluctuating ventilation rates all decrease with wider internal partitions.The normalized total ventilation rate decreases by 7.6%when w/H is increased from 50%to 75%.However,the reduction rate is only 0.23%between w/H=0 and 25%,and only 0.61%between w/H=25%and 50%.The ventilation rate is hardly reduced by increasing the partition width when w/H<50%,whereas greatly reduced by wider partition for w/H>50%.Increasing the partition height will reduce the mean ventilation rate but promote the fluctuating and total ventilation rate in some cases.An increase of total ventilation rate by 1.4%is observed from h/H=50%to 75%.The ventilation rate is larger when the internal partition is attached to the leeward or windward wall.The total,mean and fluctuating ventilation rates for d/H=50%are relatively higher than d/H=0 by 1.5%,3.1%and 0.8%,respectively.Hence the internal partition should be mounted attached to the windward wall so as to obtain the greatest pumping ventilation rate.The periodicity of pumping flow oscillation and pumping frequency are independent of the partition configurations.The peak power of pumping flow is the lowest for the widest internal partition and is negatively affected by the partition height,but it generally has a positive correlation with the distance between the partition and leeward wall.Present research will help to understand pumping ventilation mechanism in real buildings with internal partitioning and provide theoretical basis for developing unsteady natural ventilation technology in low-carbon buildings. 展开更多
关键词 pumping ventilation single-sided ventilation internal partitioning periodic oscillation ventilation rate
原文传递
Experimental investigation on indoor daylight environment of building with Cadmium Telluride photovoltaic window
7
作者 Yilin Hu Qingwen Xue +4 位作者 Haobo Wang Peng Zou Jinming Yang Shikeng Chen Yuanda Cheng 《Energy and Built Environment》 2024年第3期404-413,共10页
Photovoltaic(PV)windows have received more and more attention in recent years since their active energy-saving advantages.Considering the surface covered with solar cell modules,the indoor daylight environment of PV w... Photovoltaic(PV)windows have received more and more attention in recent years since their active energy-saving advantages.Considering the surface covered with solar cell modules,the indoor daylight environment of PV windows is obviously different with clear glass windows.However,despite many scholars have studied the indoor daylight environment of PV windows,there few investigations study it from the perspective of human subjective visual perception.In this paper,the indoor daylight environment and human visual comfort of building with Cadmium Telluride Photovoltaic(CdTe-PV)window were investigated.Firstly,the parameters of indoor daylight environment and subjective questionnaires in rooms with CdTe-PV window and clear glass window were analyzed respectively.On the basis of this,combined with indoor working surface illuminance and results of subjective questionnaires,the daylight illuminance threshold of human visual comfort was investigated by the method of Mean Bias Degree(MBD).Finally,an evaluation model for indoor daylight environment of buildings with CdTe-PV window was developed by Fuzzy Comprehensive Evaluation Method.The results showed that the working surface illuminance of CdTe-PV window was lower than that of clear glass room,the CCT of different windows room had a minor gap and the CdTe-PV window room was closer to the recommended range that was 3300-5000K.As for CRI,both the CdTe-PV window room and the clear glass room could meet the visual comfort requirements of office staff.Furthermore,it was found that the requirement of human visual comfort was met when indoor working surface illuminance varies between 500-2200lx in the room with CdTe-PV window.At last,according to the comprehensive evaluation model proposed in this paper,it was found that the indoor daylight environment of buildings with CdTe-PV window was excellent in the present experiment. 展开更多
关键词 Cadmium Telluride photovoltaic(CdTe-PV)window Daylight environment Human visual comfort Fuzzy comprehensive evaluation method
原文传递
A Quantitative Process-Based Inventory Study on Material Embodied Carbon Emissions of Residential, Office, and Commercial Buildings in China 被引量:6
8
作者 LUO Zhixing CANG Yujie +2 位作者 ZHANG Nan YANG Liu LIU Jiaping 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第6期1236-1251,共16页
Studies on building carbon emissions focus mainly on the materialization phase of life cycle, as carbon emissions in this stage is intensive and high. This paper proposes a simplified model to calculate embodied carbo... Studies on building carbon emissions focus mainly on the materialization phase of life cycle, as carbon emissions in this stage is intensive and high. This paper proposes a simplified model to calculate embodied carbon emissions in building design stage by conducting a process-based inventory analysis of carbon emissions from materials used in 129 residential buildings, 41 office buildings, and 21 commercial buildings during materialization phase. The results indicate that average carbon emissions per unit area from building materials used in residential buildings, office buildings, and commercial buildings are 514.66 kgCO2 e/m2, 533.69 kg CO2 e/m2 and 494.19 kgCO2 e/m2, respectively. Besides, ten kinds of building materials(namely, steel, commercial concrete, wall building materials, mortar, copper core cables, architectural ceramics, PVC pipes, thermal insulation materials, doors and windows, and water paint) constitute 99% of total carbon emissions in all three types of buildings. These materials are major carbon emissions sources in materialization phase. Thus, embodied carbon emissions can be significantly reduced by limiting the amount of these materials in architectural design as well as by using environmental friendly materials. 展开更多
关键词 EMBODIED carbon emissions life cycle analysis MATERIALIZATION phase building MATERIAL
原文传递
Hydration Characteristics and Microstructure of Alkali-Activated Slag Concrete: A Review 被引量:6
9
作者 Qiang Fu Mengxin Bu +3 位作者 Zhaorui Zhang Wenrui Xu Qiang Yuan Ditao Niu 《Engineering》 SCIE EI CAS CSCD 2023年第1期162-179,共18页
Alkali-activated slag concrete (AASC) is a new green building material. The amount of CO_(2) produced by AASC is 1/5th of that produced by ordinary Portland cement concrete (OPCC). In addition, AASC promotes the reuse... Alkali-activated slag concrete (AASC) is a new green building material. The amount of CO_(2) produced by AASC is 1/5th of that produced by ordinary Portland cement concrete (OPCC). In addition, AASC promotes the reuse of slag and other wastes and saves resources. Furthermore, the scope of use of slag has been expanded. The progress of the research on the hydration characteristics, microstructure, interfacial transition zone, and pore structure of AASC based on the relevant literatures was analyzed and summarized in this study. The influences of the slag composition, the type and dosage of the alkali activator, and the curing conditions on the hydration characteristics and the microstructure of the AASC were discussed. Relatively few research results on the microstructure of AASC are available, and the relevant conclusions are not completely consistent. Moreover, there are many constraints on the development of AASC (e.g., complex composition of raw materials of slag, large shrinkage deformation, and low fluidity). Therefore, further research is required. 展开更多
关键词 Alkali-activated slag concrete Hydration characteristics Pore structure Inter facial transiti on zone Micr ostructure
在线阅读 下载PDF
Heating load reduction characteristics of passive solar buildings in Tibet,China 被引量:2
10
作者 Yanfeng Liu Zuoxiang Yu +1 位作者 Cong Song Dengjia Wang 《Building Simulation》 SCIE EI CSCD 2022年第6期975-994,共20页
China’s Tibet autonomous region has abundant solar energy resources,cold winters,and cool summers.These are ideal conditions for the application of passive solar heating methods.However,differences in climatic condit... China’s Tibet autonomous region has abundant solar energy resources,cold winters,and cool summers.These are ideal conditions for the application of passive solar heating methods.However,differences in climatic conditions and building types can significantly affect passive solar technology’s feasibility,which makes it challenging to promote passive solar buildings in Tibet.In this study,the suitability zone for passive solar technology is categorized based on the sub-zoning indicators for Tibet.By modeling between direct gain windows,Trombe walls,and attached sunspaces,the effect of indoor thermal environments and the capacity for heating load reduction is compared for different passive solar technologies.The climate-difference impact analysis shows that the I-B-1 zone is better suited for passive solar technology than other climate zones.More specifically,this zone has an average energy-saving rate difference of up to 28.61%compared to the II-A-1 zone.The analysis of the impact of building type differences indicates that residential buildings have higher Trombe wall-to-wall ratio limits and more significant potential for energy savings than office buildings.The study also clarifies the implications of Tibet’s climate conditions and building type differences on the effectiveness of passive solar technology.Moreover,it recommends appropriate passive solar technology adoption methods for every climate zone.This study can be used as a reference and engineering guide to improving the indoor thermal environment of Tibetan buildings,tailored to the highly variable local conditions. 展开更多
关键词 passive solar technology building energy saving indoor thermal environment numerical simulation
原文传递
Damage Evolution of Concrete under the Actions of Stray Current and Sulphate 被引量:4
11
作者 ZHANG Lu WEN Bo +1 位作者 NIU Ditao JI Zhiyuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第4期578-587,共10页
Based on the mechanism of stray current generation in underground structures,the concrete durability test device for stray current and sulphate in typical soil environment was designed to study the damage of concrete ... Based on the mechanism of stray current generation in underground structures,the concrete durability test device for stray current and sulphate in typical soil environment was designed to study the damage of concrete under the action of stray current and sulphate.The deterioration law of concrete under the action of stray current and sulphate was studied by microscopic techniques such as scanning electron microscopy (SEM) and X-ray diffraction (XRD).The microstructure of corroded concrete was observed to determine the phase composition of erosion products.The damage performances such as quality,strength,and dynamic elastic mode of corroded concrete were performed.The experimental results show that,under the action of stray current,the products of sulfate-eroded concrete are mainly gypsum,ettringite,and thaumasite;the stray current accelerates the hydration process of cement and the erosion of concrete by sulfate;when the concrete pores are filled with the erosion product,there is an increase of approximately 10% in the concrete compressive strength and dynamic elastic modulus;and the concrete compressive strength is more sensitive to the stray current electrification period than the current intensity. 展开更多
关键词 Damage Evolution of Concrete under the Actions of Stray Current and Sulphate
在线阅读 下载PDF
Organization and evolution of climate responsive strategies,used in Turpan vernacular buildings in arid region of China
12
作者 Wenfang He Zhenying Wu +1 位作者 Ran Jin Jiaping Liu 《Frontiers of Architectural Research》 CSCD 2023年第3期556-574,共19页
Under the global crisis of energy shortage and environmental pollution,the climate responsive strategies used in vernacular buildings have attracted much attention for their potential to reduce energy consumption and ... Under the global crisis of energy shortage and environmental pollution,the climate responsive strategies used in vernacular buildings have attracted much attention for their potential to reduce energy consumption and carbon emissions.However,the relationships between these traditional climatic strategies were not precisely perceived,which may cause the inapplicability of these strategies for contemporary rural houses.In this paper,taking the Turpan vernacular buildings in arid region of China,the climate responsive strategies of buildings in the most significant periods such as the Gaochang period(before 1318),the Khanate and Republican period(1318–1949),the Modern period(1949–2010),and the Contemporary period(2011–present)were summarized.In addition,two different types of climatic strategies organizations,namely multilayer spaces and integrated building envelopes,were identified based on the temperature difference measurement and comparative analysis.The assessment of thermal performance of the organizations was conducted by the methodology of software simulation.Furthermore,the applicability of the organizations in rural areas was discussed,and a new combined organization was proposed.Consequently,this study can contribute to provide the main approaches for climatically responsive rural houses. 展开更多
关键词 Climate responsive strategy Vernacular building ORGANIZATION Temperature difference Multilayer space ARID
原文传递
Erratum to: Heating load reduction characteristics of passive solar buildings in Tibet, China
13
作者 Yanfeng Liu Zuoxiang Yu +1 位作者 Cong Song Dengjia Wang 《Building Simulation》 SCIE EI CSCD 2022年第8期1545-1546,共2页
An incorrect Figure 7 was published in the original article.The data for Scenarios A1-A12 were accidentally deleted during typesetting.This erratum provides the correct Figure 7.
关键词 FIGURE deleted TIBET
原文传递
An improved transfer learning strategy for short-term cross-building energy prediction usingdata incremental 被引量:4
14
作者 Guannan Li Yubei Wu +5 位作者 Chengchu Yan Xi Fang Tao Li Jiajia Gao Chengliang Xu Zixi Wang 《Building Simulation》 SCIE EI CSCD 2024年第1期165-183,共19页
The available modelling data shortage issue makes it difficult to guarantee the performance of data-driven building energy prediction(BEP)models for both the newly built buildings and existing information-poor buildin... The available modelling data shortage issue makes it difficult to guarantee the performance of data-driven building energy prediction(BEP)models for both the newly built buildings and existing information-poor buildings.Both knowledge transfer learning(KTL)and data incremental learning(DIL)can address the data shortage issue of such buildings.For new building scenarios with continuous data accumulation,the performance of BEP models has not been fully investigated considering the data accumulation dynamics.DIL,which can learn dynamic features from accumulated data adapting to the developing trend of new building time-series data and extend BEP model's knowledge,has been rarely studied.Previous studies have shown that the performance of KTL models trained with fixed data can be further improved in scenarios with dynamically changing data.Hence,this study proposes an improved transfer learning cross-BEP strategy continuously updated using the coarse data incremental(CDI)manner.The hybrid KTL-DIL strategy(LSTM-DANN-CDI)uses domain adversarial neural network(DANN)for KLT and long short-term memory(LSTM)as the Baseline BEP model.Performance evaluation is conducted to systematically qualify the effectiveness and applicability of KTL and improved KTL-DIL.Real-world data from six-type 36 buildings of six types are adopted to evaluate the performance of KTL and KTL-DIL in data-driven BEP tasks considering factors like the model increment time interval,the available target and source building data volumes.Compared with LSTM,results indicate that KTL(LSTM-DANN)and the proposed KTL-DIL(LSTM-DANN-CDI)can significantly improve the BEP performance for new buildings with limited data.Compared with the pure KTL strategy LSTM-DANN,the improved KTL-DIL strategy LSTM-DANN-CDI has better prediction performance with an average performance improvement ratio of 60%. 展开更多
关键词 building energy prediction(BEP) cross-building data incremental learning(DIL) domain adversarial neural network(DANN) knowledge transfer learning(KTL)
原文传递
An interpretable graph convolutional neural network based fault diagnosis method for building energy systems 被引量:2
15
作者 Guannan Li Zhanpeng Yao +2 位作者 Liang Chen Tao Li Chengliang Xu 《Building Simulation》 SCIE EI CSCD 2024年第7期1113-1136,共24页
Due to the fast-modeling speed and high accuracy,deep learning has attracted great interest in the field of fault diagnosis in building energy systems in recent years.However,the black-box nature makes deep learning m... Due to the fast-modeling speed and high accuracy,deep learning has attracted great interest in the field of fault diagnosis in building energy systems in recent years.However,the black-box nature makes deep learning models generally difficult to interpret.In order to compensate for the poor interpretability of deep learning models,this study proposed a fault diagnosis method based on interpretable graph neural network(GNN)suitable for building energy systems.The method is developed by following three main steps:(1)selecting NC-GNN as a fault diagnosis model for building energy systems and proposing a graph generation method applicable to the model,(2)developing an interpretation method based on InputXGradient for the NC-GNN,which is capable of outputting the importance of the node features and automatically locating the fault related features,(3)visualizing the results of model interpretation and validating by matching with expert knowledge and maintenance experience.Validation was performed using the public ASHRAE RP-1043 chiller fault data.The diagnosis results show that the proposed method has a diagnosis accuracy of over 96%.The interpretation results show that the method is capable of explaining the decision-making process of the model by identifying fault-discriminative features.For almost all seven faults,their fault-discriminative features were correctly identified. 展开更多
关键词 fault diagnosis graph neural network building energy system InputXGradient FEATURE INTERPRETATION
原文传递
Effects of various information scenarios on layer-wise relevance propagation-based interpretable convolutional neural networks for air handling unit fault diagnosis 被引量:1
16
作者 Chenglong Xiong Guannan Li +3 位作者 Ying Yan Hanyuan Zhang Chengliang Xu Liang Chen 《Building Simulation》 SCIE EI CSCD 2024年第10期1709-1730,共22页
Deep learning(DL),especially convolutional neural networks(CNNs),has been widely applied in air handling unit(AHU)fault diagnosis(FD).However,its application faces two major challenges.Firstly,the accessibility of ope... Deep learning(DL),especially convolutional neural networks(CNNs),has been widely applied in air handling unit(AHU)fault diagnosis(FD).However,its application faces two major challenges.Firstly,the accessibility of operational state variables for AHU systems is limited in practical,and the effectiveness and applicability of existing DL methods for diagnosis require further validation.Secondly,the interpretability performance of DL models under various information scenarios needs further exploration.To address these challenges,this study utilized publicly available ASHRAE RP-1312 AHU fault data and employed CNNs to construct three FD models under three various information scenarios.Furthermore,the layer-wise relevance propagation(LRP)method was used to interpret and explain the effects of these three various information scenarios on the CNN models.An R-threshold was proposed to systematically differentiate diagnostic criteria,which further elucidates the intrinsic reasons behind correct and incorrect decisions made by the models.The results showed that the CNN-based diagnostic models demonstrated good applicability under the three various information scenarios,with an average diagnostic accuracy of 98.55%.The LRP method provided good interpretation and explanation for understanding the decision mechanism of CNN models for the unlimited information scenarios.For the very limited information scenario,since the variables are restricted,although LRP can reveal key variables in the model’s decision-making process,these key variables have certain limitations in terms of data and physical explanations for further improving the model’s interpretation.Finally,an in-depth analysis of model parameters—such as the number of convolutional layers,learning rate,βparameters,and training set size—was conducted to examine their impact on the interpretative results.This study contributes to clarifying the effects of various information scenarios on the diagnostic performance and interpretability of LRP-based CNN models for AHU FD,which helps provide improved reliability of DL models in practical applications. 展开更多
关键词 air handling unit(AHU) fault diagnosis convolutional neural network(CNN) layer-wise relevance propagation(LRP) interpretation and explanation various information scenarios
原文传递
Spatio-temporal distribution of gaseous pollutants from multiple sources in industrial buildings with different flow patterns 被引量:5
17
作者 Yingxue Cao Yi Wang +4 位作者 Zhuolei Yu Caiwu Lu Songheng Wu Yang Yang Xiaojing Meng 《Building Simulation》 SCIE EI CSCD 2022年第9期1629-1644,共16页
Energy consumption of industrial buildings has remained continuously high,and the environmental quality requirements are also constantly improving.Only by improving industrial environmental control technology based on... Energy consumption of industrial buildings has remained continuously high,and the environmental quality requirements are also constantly improving.Only by improving industrial environmental control technology based on the transport mechanism of the pollution,can the energy consumption of industrial building environmental control be further reduced,and the environmental quality of industrial buildings can be improved as well.Therefore,after verifying the numerical simulation by experiments,this study uses a self-label method to investigate the spatio-temporal distribution of gaseous pollutants from multiple time-series sources in industrial plants with different length-span ratios.The results show that,the polluted flow in plants with different aspect ratios have different flow patterns:(i)the,,Back-mixingw flow pattern occurs when the ratio of ventilation rate 6 and polluted flow rate at the exhaust height b is less than 1,i.e.,G/L_(p)<1,and(ii)the"One-way"flow pattern occurs when G/L_(p)>1.For plants with the"Back-mixing"pattern,the following source pollutants enter a density stratified environment induced by the retained pre-source pollutants.The flow of following source pollutants released at the same intensity as the precursor source can reach the roof,while those with low velocity and density difference may be blocked during the ascending process.The maximum height zm of the flow of the following source is related to both the initial Froude number Fr_(o)of the following source and the unsteady vertical density gradient of the fluid in the indoor environment dpa/dz.For plants with the,,One-way,/pattern,the flow from the following source enters into an environment with approximately uniform density.Under the condition of positive buoyancy,design parameters of ventilation corresponding to the vicinity of G/L_(p)=1 may be the optimal solution for safety and energy conservation. 展开更多
关键词 multiple time-series sources flow pattern long and narrow industrial building industrial ventilation gaseous pollutants
原文传递
Dynamic thermal performance and energy-saving potential analysis of a modular pipe-embedded building envelope integrated with thermal diffusive materials 被引量:3
18
作者 Yang Yang Sarula Chen 《Building Simulation》 SCIE EI CSCD 2023年第12期2285-2305,共21页
In the context of racing to carbon neutrality,the pipe-embedded building system makes the opaque envelopes gradually regarded as the multi-functional element,which also provides an opportunity for thermal insulation s... In the context of racing to carbon neutrality,the pipe-embedded building system makes the opaque envelopes gradually regarded as the multi-functional element,which also provides an opportunity for thermal insulation solutions to transform from high to zero-carbon attributes.Based on the re-examination of the heat transfer process of conventional pipe-embedded radiant(CPR)walls,the modular pipe-embedded radiant(MPR)wall integrated with thermal diffusive materials is proposed to enhance the heat transfer capacity of CPR walls in the direction parallel to the wall surface,thereby forming a more stable and continuous invisible thermal barrier layer inside the opaque envelopes.A comprehensive thermal and energy-saving analysis study regarding the influence mechanism of several key factors of MPR walls,e.g.,the inclination angle of the filler cavity(θ-value),geometry size of the filler cavity(a:b-value)and thermal conductivity of the filler(λf-value),is conducted based on a validated numerical model.Results show that the dynamic thermal behaviors of MPR walls can be significantly improved due to that the radial thermal resistance in the filler cavity of MPR walls can be reduced by 50%,while the maximum extra exterior surface heat loss caused by the optimization measures is only 2.1%.Besides,a better technical effect can be achieved by setting the major axis of the filler cavity towards the room side,where the interior surface heat load/total injected heat first decreases/increases and then increases/decreases with the increase of theθ-value.In particular,the MPR wall withθL=60°can obtain the best performance when other conditions remain the same.Moreover,the performance indicators of MPR walls can be further improved with the increase of the cavity size(a:b-value),while showing a trend of rapid improvement in theλf-value range of 2–5λC and slow improvement increase in theλf-value range of 5–12λC.In addition,the improvement effect brought by optimizing theθ-value is more obvious as the a:b-value orλf-value increases. 展开更多
关键词 building energy efficiency pipe-embedded building envelope thermal diffusive material thermal characteristics numerical simulation
原文传递
Timetabling optimization of classrooms and self-study rooms in university teaching buildings based on the building controls virtual test bed platform considering energy efficiency 被引量:2
19
作者 Yanfeng Liu Hui Ming +2 位作者 Xi Luo Liang Hu Yongkai Sun 《Building Simulation》 SCIE EI CSCD 2023年第2期263-277,共15页
The energy consumption of a teaching building can be effectively reduced by timetable optimization.However,in most studies that explore methods to reduce building energy consumption by course timetable optimization,se... The energy consumption of a teaching building can be effectively reduced by timetable optimization.However,in most studies that explore methods to reduce building energy consumption by course timetable optimization,self-study activities are not considered.In this study,an MATLAB-EnergyPlus joint simulation model was constructed based on the Building Controls Virtual Test Bed platform to reduce building energy consumption by optimizing the course schedule and opening strategy of self-study rooms in a holistic way.The following results were obtained by taking a university in Xi’an as an example:(1)The energy saving percentages obtained by timetabling optimization during the heating season examination week,heating season non-examination week,cooling season examination week,and cooling season non-examination week are 35%,29.4%,13.4%,and 13.4%,respectively.(2)Regarding the temporal arrangement,most courses are scheduled in the morning during the cooling season and afternoon during the heating season.Regarding the spatial arrangement,most courses are arranged in the central section of the middle floors of the building.(3)During the heating season,the additional building energy consumption incurred by the opening of self-study rooms decreases when duty heating temperature increases. 展开更多
关键词 timetabling optimization university teaching buildings energy efficiency Building Controls Virtual Test Bed platform genetic algorithm
原文传递
Introducing Degree Days to Building Thermal Climatic Zoning in China 被引量:1
20
作者 LIU Yan WEN Zeqiu +4 位作者 LYU Kailin YANG Liu LIU Jiaping DONG Hong GAO Qinglong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第3期1155-1170,共16页
Building thermal climatic zoning is a key issue in building energy efficiency.Heating degree days(HDD) and cooling degree days(CDD) are often employed as indexes to represent the heating and cooling energy demand in c... Building thermal climatic zoning is a key issue in building energy efficiency.Heating degree days(HDD) and cooling degree days(CDD) are often employed as indexes to represent the heating and cooling energy demand in climatic zoning.However,only using degree days may oversimplify the climatic zoning in regions with complex climatic conditions.In the present study,the application of degree days to current building thermal climatic zoning in China was assessed based on performance simulations.To investigate the key indexes for thermal climatic zoning,the climate characteristics of typical cities were analyzed and the relationships between the climate indexes and heating/cooling demand were obtained.The results reveal that the annual cumulative heating load had a linear correlation with HDD 18 only in regions with small differences in altitude.Therefore,HDD is unsuitable for representing the heating demand in regions with large differences in altitude.A comprehensive index(winter climatic severity index) should be employed instead of HDD,or complementary indexes(daily global solar radiation or altitude) could be used to further divide climate zones.In the current official climatic zoning,the base temperature of 26℃ for CDD is excessively high.The appropriate base temperature range is 18℃ to 22℃.This study provides a reference for selecting indexes to improve thermal climatic zoning in regions with similar climates. 展开更多
关键词 climatic zoning degree days building thermal design base temperature solar radiation
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部