Unraveling the precise mineralization age is vital to understand the geodynamic setting and ore-forming mechanism of the sediment-hosted Pb-Zn deposit;this has long been a challenge.The Sichuan-Yunnan-Guizhou(SYG)tria...Unraveling the precise mineralization age is vital to understand the geodynamic setting and ore-forming mechanism of the sediment-hosted Pb-Zn deposit;this has long been a challenge.The Sichuan-Yunnan-Guizhou(SYG)triangle in the southwestern margin of the Yangtze Block is a globally recognized carbonate-hosted Pb-Zn metallogenic province and also an essential part of the South China low-temperature metallogenic domain.This region has>30 million tons(Mt)Zn and Pb resources and shows the enrichment of dispersed metals,such as Ga,Ge,Cd,Se,and Tl.During the past 2 decades,abundant data on mineralization ages of Pb-Zn deposits within the SYG triangle have been documented based on various radioisotopic dating methods,resulting in significant progress in understanding the geodynamic background and ore formation of Pb-Zn deposits hosted in sedimentary rocks at SYG triangle.This paper provides a comprehensive summary of the geochronological results and Pb-Sr isotopic data regarding Pb-Zn deposits in the SYG triangle,which identified two distinct Pb-Zn mineralization periods influencing the dynamic processes associated with the expansion and closure of the Paleo-Tethys Ocean in the western margin of the Yangtze Block.The predominant phase of Pb-Zn mineralization at SYG triangle spanned from the Middle Triassic to Early Jurassic(226-191 Ma),which was intensely correlated with the large-scale basin fluid transport triggered by the closure of the Paleo-Tethys Ocean and Indosinian orogeny.The secondary Pb-Zn mineralization phase occurred during the Late Devonian to Late Carboniferous and was controlled by extensional structures associated with the expansion of the Paleo-Tethys Ocean.Further investigation is necessary to clarify the occurrence and potential factors involved in the Pb-Zn mineralization events during the Late Devonian to Late Carboniferous.展开更多
The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million ton...The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million tons at Pb+Zn grade of higher than 25%and contains abundant associated metals,such as Ag,Ge,Cd,and Ga.The deposits are hosted in the Lower Carboniferous carbonate strata and the Permian Emeishan basalts which distributed in the northern and southwestern parts of the orefield.Calcite is the only gangue mineral in the primary ores of the deposits and can be classified into three types,namely lumpy,patch and vein calcites in accordance with their occurrence.There is not intercalated contact between calcite and ore minerals and among the three types of calcite,indicating that they are the same ore-forming age with different stages and its forming sequence is from lumpy to patch to vein calcites. This paper presents the rare earth element(REE) and C-O isotopic compositions of calcites in the Huize Pb-Zn deposits.From lumpy to patch to vein calcites,REE contents decrease as LREE/ HREE ratios increase.The chondrite-normalized REE patterns of the three types of calcites are characterized by LREE-rich shaped,in which the lumpy calcite shows(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〈1,the patch calcite has(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〉1,and the vein calcite displays(La)_N〉(Ce)_N〉(Pr)_N〉(Nd)_N with Eu/Eu~*〉1.The REE geochemistry of the three types of calcite is different from those of the strata of various age and Permian Emeishan basalt exposed in the orefield.Theδ^(13) C_(PDb) andδ^(18)O_(Smow) values of the three types of calcites vary from-3.5‰to-2.1‰and 16.7‰to 18.6‰,respectively,falling within a small field between primary mantle and marine carbonate in theδ^(13)C_(PDb) vsδ^(18)O_(Smow) diagram. Various lines of evidence demonstrate that the three types of calcites in the deposits are produced from the same source with different stages.The ore-forming fluids of the deposits resulted from crustal -mantle mixing processes,in which the mantle-derived fluid components might be formed from degassing of mantle or/and magmatism of the Permian Emeishan basalts,and the crustal fluid was mainly provided by carbonate strata in the orefield.The ore-forming fluids in the deposits were homogenized before mineralization,and the ore-forming environment varied from relatively reducing to oxidizing.展开更多
Laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) was used to determine the trace element concentrations of magnetite from the Heifengshan, Shuangfengshan, and Shaquanzi Fe(–Cu) deposits ...Laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) was used to determine the trace element concentrations of magnetite from the Heifengshan, Shuangfengshan, and Shaquanzi Fe(–Cu) deposits in the Eastern Tianshan Orogenic Belt. The magnetite from these deposits typically contains detectable Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn and Ga. The trace element contents in magnetite generally vary less than one order of magnitude. The subtle variations of trace element concentrations within a magnetite grain and between the magnetite grains in the same sample probably indicate local inhomogeneity of ore–forming fluids. The variations of Co in magnetite between samples are probably due to the mineral proportion of magnetite and pyrite. Factor analysis has discriminated three types of magnetite: Ni–Mn–V–Ti(Factor 1), Mg–Al–Zn(Factor 2), and Ga– Co(Factor 3) magnetite. Magnetite from the Heifengshan and Shuangfengshan Fe deposits has similar normalized trace element spider patterns and cannot be discriminated according to these factors. However, magnetite from the Shaquanzi Fe–Cu deposit has affinity to Factor 2 with lower Mg and Al but higher Zn concentrations, indicating that the ore–forming fluids responsible for the Fe–Cu deposit are different from those for Fe deposits. Chemical composition of magnetite indicates that magnetite from these Fe(–Cu) deposits was formed by hydrothermal processes rather than magmatic differentiation. The formation of these Fe(–Cu) deposits may be related to felsic magmatism.展开更多
Ore deposits (occurrences) of Au, As, Sb, Hg, etc. distributed in Southwest Guizhou constitute the important portion of the low-temperature metallogenic domain covering a large area in Southwest China, with the Carlin...Ore deposits (occurrences) of Au, As, Sb, Hg, etc. distributed in Southwest Guizhou constitute the important portion of the low-temperature metallogenic domain covering a large area in Southwest China, with the Carlin-type Au and Sb deposits being the most typical ones. In this paper the Au and Sb ore deposits are taken as the objects of study. Through the petrographic analysis, microthermomitric measurement and Raman spectrophic analysis of fluid inclusions in gangue minerals and research on the S and C isotopic compositions in the gold ore deposits we can reveal the sources of ore-forming materials and ore-forming fluids and the rules of ore fluid evolution. Ore deposits of Au, Sb, etc. are regionally classified as the products of ore fluid evolution, and their ore-forming materials and ore fluids were probably derived mainly from the deep interior of the Earth. Fluid inclusion studies have shown that the temperatures of Au mineralization are within the range of 170-361℃,the salinities are 0.35 wt%-8 wt% NaCl eq.; the temperatures of Sb mineralization are 129.4-214℃ and the salinities are 0.18 wt%- 3.23 wt% NaCl eq.; the ore-forming fluid temperatures and salinities tend to decrease progressively. In the early stage (Au metallogenic stage) the ore-forming fluids contained large amounts of volatile components such as CO2, CH4, N2 and H2S, belonging to the H2O-CO2-NaCl fluid system; in the late stage (Sb metallogenic stage) the ore-forming fluids belong to the Sb-bearing H2O-NaCl system. The primitive ore-forming fluids may have experienced at least two processes of immiscibility: (1) when early ore-bearing hydrothermal solutions passed through rock strata of larger porosity or fault broken zones, CO2, CH4, N2 would escape from them, followed by the release of pressure, resulting in pressure release and boiling of primitive homogenous fluids, thereafter giving rise to their phase separation, thus leading to Au unloading and mineralization; and (2) in the late stage (Sb metallogenic stage ) a large volume of meteoric water was involved in the ore-forming fluids, leading to fluid boiling as a result of their encounter, followed by the drop of fluid temperature. As a result, the dissolubility of Sb decreased so greatly that Sb was enriched and precipitated as ores. Due to differences in physic-chemical conditions between Au and Sb precipitates, Au and Sb were respectively precipitated in different structural positions, thus creating such a phenomenon of Au/Sb paragenesis and differentiation in space.展开更多
No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are most...No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are mostly positive and characterized by rich sulfur(S) content. This suggests that the sulfur of the Dafulou ore deposit is derived from magma and relates to the Longxianggai concealed granite, which points to the important role of magma during mineralization and implyies the product of the active continental margin. By comparison between the Dafulou and the Kengma tin deposit, significant differences exist in the sulfur isotope composition. In the Kengma deposit, the sulfur isotope composition is characterized by the high negative value, which is different from the Dafulou tin-polymetallic deposit. The difference of the enrichment and fractionation of the sulfur isotope is the synthesized result of the metallogenic conditions. It also has the difference in the metallogenic environment and metallogenic characteristics of the deposit in the same ore belt.展开更多
The Shangling vanadium deposit, which occurs in the Lower Devonian Tangding formation black rock series strata, has V2O5 reserves of more than 1.5 million tons and prospective reserves of more than 2 million tons. Pre...The Shangling vanadium deposit, which occurs in the Lower Devonian Tangding formation black rock series strata, has V2O5 reserves of more than 1.5 million tons and prospective reserves of more than 2 million tons. Preliminary studies on the occurrence state of vanadium(V) in this deposit have been conducted by artificial heavy minerals concentrates, leaching experiments, scanning and transmission electron microscopy and X-ray powder diffraction.These experiments have revealed no independent vanadium mineral occurrences in the Shangling vanadium deposit and the percentages of water-soluble vanadium, hydrochloric acid soluble vanadium and HF soluble vanadium were1.93 %, 21.42 % and 76.47 %, respectively. Based on our data and earlier research, we estimate that the valences state of V absorbed onto the surface of organic matter or clastic particles are +5 and +4, accounting for 10.00 % and13.35 % of the total amount of V, respectively and the valences state of V that exist in the octahedral crystal lattice of authigenic illite include +3 and +4, accounting for71.64 % and 4.83 % of the total amount of V, respectively.By calculating the correlation between the total organic carbon and V, we infer that after deposition and before entering the crystal lattice of illite, V occurs in the form of humate complex or is adsorbed by organic matter. About4.24 % of the Al is in the octahedral crystal lattice of illite,which was replaced by the vanadium under the metallogenic environments of Shanglin.展开更多
Theoretical studies of the diffusionalisotope effect in solids are still stuck in the 1960s and 1970s.With the development of high spatial resolution mass spectrometers,isotopic data of mineral grains are rapidly accu...Theoretical studies of the diffusionalisotope effect in solids are still stuck in the 1960s and 1970s.With the development of high spatial resolution mass spectrometers,isotopic data of mineral grains are rapidly accumulated.To dig up information from these data,molecularlevel theoretical models are urgently needed.Based on the microscopic definition of the diffusion coe fficient(D),a new theoretical framework for calculating the diffusional isotope effect(DIE(v))(intermsofD*/D)forvacancy-mediated impurity diffusion in solids is provided based on statistical mechanics formalism.The newly derived equation shows that theDIE(v)can be easily calculated as long as the vibration frequencies of isotope-substituted solids are obtained.The calculatedDIE(v)values of^(199)Au/^(195)Au and^(60)Co/^(57)Co during diffusion in Cu and Au metals are all within 1%of errors compared to the experimental data,which shows that this theoretical model is reasonable and precise.展开更多
The Pb-Zn metallogenic district in NW Guizhou Province is an important part of the Yun-nan-Sichuan-Guizhou Pb-Zn metallogenic province, and also is one of the most important Pb-Zn producers in China. The hosting rocks...The Pb-Zn metallogenic district in NW Guizhou Province is an important part of the Yun-nan-Sichuan-Guizhou Pb-Zn metallogenic province, and also is one of the most important Pb-Zn producers in China. The hosting rocks of the Pb-Zn deposits are Devonian to Permian carbonate rocks, and the basement rocks are meta-sedimentary and igneous rocks of the Proterozoic Kunyang and Huili groups. The ore minerals are composed of sphalerite, galena and pyrite, and the gangue minerals are include calcite and dolomite. Geology and C-O isotope of these deposits were studied in this paper. The results show that δ13C and δ18O values of hydrothermal calcite, altered wall rocks-dolostone, sedimentary calcite and hosting carbonate rocks range from -5.3‰ to -0.6 ‰ (mean -3.4‰) and +11.3‰ to +20.9 ‰ (mean +17.2‰), -3.0‰ to +0.9 ‰ (mean -1.3‰) and +17.0‰ to +20.8‰ (mean +19.7‰), +0.6‰ to +2.5 ‰ (mean +1.4‰) and +23.4‰ to +26.5 ‰ (mean +24.6‰), and -1.8‰ to +3.9‰ (mean +0.7‰) and +21.0‰ to +26.8‰ (mean +22.9‰), respectively, implying that CO2 in the ore-forming fluids was mainly a result of dissolution of Devonian and Carboniferous carbonate rocks. However, it is difficult to evaluate the contribution of sediment de-hydroxylation. Based on the integrated analysis of geology, C and O isotopes, it is believed that the ore-forming fluids of these carbonate-hosted Pb-Zn deposits in this area were derived from multiple sources, including hosting carbonate rocks, Devonian to Permian sedimentary rocks and basement rocks (the Kun-yang and Huili groups). Therefore, the fluids mixing is the main precipitation mechanism of the Pb-Zn deposit in this province.展开更多
Studies on the helium, lead and sulfur isotopic composition were performed of the Gejiu super-large Sn-polymetallic ore deposit. The results indicated that the ore-forming materials came from different sources and the...Studies on the helium, lead and sulfur isotopic composition were performed of the Gejiu super-large Sn-polymetallic ore deposit. The results indicated that the ore-forming materials came from different sources and the deposit is a product of superimposed mineralization. The deposit is characterized by multi-source and multi-period mineralization, which experienced submarine hydrothermal deposition and Late Yanshanian magmatic hydrothermal mineralization. It is held that the Gejiu super-large Sn-polymetallic ore deposit is a multi-genesis deposit.展开更多
The Baoshan Cu–Pb–Zn deposit, located in the central part of the Qin–Hang belt in South China, is closely related to the granodiorite-porphyry. However, the characteristics and the source of the ore-forming fluid a...The Baoshan Cu–Pb–Zn deposit, located in the central part of the Qin–Hang belt in South China, is closely related to the granodiorite-porphyry. However, the characteristics and the source of the ore-forming fluid are still ubiquitous. According to the crosscutting relationships between veinlets and their mineral assemblages, three stages of hydrothermal mineralization in this deposit were previously distinguished. In this contribution, two different colored fluorites from the major sulfide mineralization stage are recognized:(1) green fluorites coexisting with Pb–Zn ores;and(2) violet fluorites coexisting with pyrite ores. Y/Ho ratios verify the green fluorites and violet fluorites were co-genetic. The fluorites display elevated(La/Yb)Nratios, which decrease from 1201 to 5710 for green fluorites to 689–1568 for violet fluorites, indicating that they precipitated at the early hydrothermal sulfide stage,and Pb–Zn ores crystallized earlier than pyrite ores. The similar Tb/La ratios of the fluorites also indicate that they precipitated at an early stage within a short time. From the green fluorites to violet fluorites, the total rare earth element(ΣREE)concentrationsdecreasefrom1052–1680 ppm to 148–350 ppm, indicating that the green fluorites precipitated from a more acidic fluid. The Eu/Eu*ratios increase from 0.17 to 0.30 for green fluorites to0.29–0.48 for violet fluorites, and the Ce/Ce* ratios decrease from 1.08–1.13 to 0.93–1.11, suggesting a gradual increase in oxygen fugacity(fO_(2)) and pH value of the mineralization fluid. Though the fluorites display similar REE patterns to the granodiorite-porphyry and limestone,the ΣREE concentrations of the fluorites are significantly higher than those of limestone and the granodiorite-porphyry, suggesting that an important undetected non-magmatic source is involved to provide sufficient REE for fluorites. The most plausible mechanism is fluid mixing between magma fluid and an undetected non-magmatic fluid.展开更多
South China can be divided into four metallogenic belts:The Middle-Lower Yangtze Metallogenic Belt(MLYB),Qinzhou-Hangzhou Metallogenic Belt(QHMB),Nanling Metallogenic Belt(NLMB),and Wuyi Metallogenic Belt(WYMB).The ma...South China can be divided into four metallogenic belts:The Middle-Lower Yangtze Metallogenic Belt(MLYB),Qinzhou-Hangzhou Metallogenic Belt(QHMB),Nanling Metallogenic Belt(NLMB),and Wuyi Metallogenic Belt(WYMB).The major mineralization in the four metallogenic belts is granite-related Cu–Au–Mo and porphyrite Fe-apatite,porphyry Cu(Au),and epithermal Pb–Zn–Ag,hydrothermal Cu–Au–Pb–Zn–Ag,and granite-related skarn-type and quartz-veins W–Sn,respectively.Low-temperature thermochronology,including fissiontrack and U-Th/He dating,has been widely used to constrain tectonic thermal evolution and ore deposits preservation.Understanding fission-track annealing and He diffusion kinetics in accessory minerals,such as zircon and apatite,is essential for dating and applications.In this study,previous zircon fission-track(ZFT)and apatite fission-track(AFT)ages in South China were collected.The result shows that the ZFT ages are mainly concentrated at140–90 Ma,and the AFT ages are mainly distributed at70–40 Ma.The age distribution and inversion temperature–time paths reveal heterogeneous exhumation histories in South China.The MLYB experienced Late CretaceousCenozoic extremely slow exhumation after rapid cooling in the Early Cretaceous.The northern QHMB(i.e.from southern Anhui province to the Hangzhou Bay)had a relatively faster rate of uplifting and denudation than the southern QHMB in the Cretaceous.Subsequently,the northern QHMB rapidly exhumed,while the continuously slow exhumation operated the southern QHMB in the Cenozoic.The southern NLMB had a more rapid cooling rate than the northern NLMB during the Cretaceous time,and the whole NLMB experienced rapid cooling in the Cenozoic,except that the southern Hunan province had the most rapid cooling rate.The WYMB possibly had experienced slow exhumation since the Late Cretaceous.The exhumation thickness of the four metallogenic belts since90 Ma is approximately calculated as follows:the MLYB≤3.5 km,the northern QHMB concentrated at3.5–5.5 km,and the southern QHMB usually less than3.5 km,the NLMB 4.5–6.5 km and the WYMB<3.5 km.The exhumation thickness of the NLMB is corresponding to the occurrence of the world-class W deposits,which were emplaced into a deeper depth of 1.5–8 km.As such,we infer that the uplifting and denudation processes of the four metallogenic belts have also played an important role in dominated ore deposits.展开更多
The Youjiang Basin is characterized by a wide distribution of Au and Sb deposits.These deposits are mainly hosted by sedimentary rocks from Cambrian to Triassic and are structurally controlled by faults and folds.Thre...The Youjiang Basin is characterized by a wide distribution of Au and Sb deposits.These deposits are mainly hosted by sedimentary rocks from Cambrian to Triassic and are structurally controlled by faults and folds.Three types of Sb mineralization can be distinguished based on geologic characteristics,economic metals,and mineral associations.The first type is dominated by Sb mineralization but contains minor or little Au,similar to the large Qinglong deposit.The second type has a spatial association with the gold deposit but formed independent Sb mineralization,reminiscent of the Badu deposit.In the third type,Sb generally formed as an accompanying element in the Carlin-type gold deposit,and stibnite occurred as euhedral crystals filling the open space and faults in the late stage of gold mineralization,analogous to the Yata deposit.Trace element concentrations and sulfur isotopic ratio of stibnite,and oxygen isotope of stibnite bearing quartz were analyzed to infer the ore source(s)for Sb mineralization and genesis.To distinguish the various types of stibnite mineralization between the deposits,Cu,Pb,and As have recognized most diagnostic,with an elevated concentration in Au and Au-Sb deposits and depleted in Sb deposit.Theδ34S isotopic composition of stibnite samples from three deposits show a wide variation,ranging from-6.6%to+17.45%.Such isotopic values may indicate the sedimentary sulfur source,introduced by fluid–rock interaction.On the other hand,fluid mixing of several end members cannot be excluded.The calculatedδ18O isotopic data of Sb-bearing quartz show the initial ore fluid in Au and Au-Sb deposits most likely have a magmatic or metamorphic origin that enriched during fluid–rock interaction,and Sb deposit characterized by initial meteoric water.From these data,we proposed that different lithologies,fluid–rock interaction,fluid pathways,and different ore fluids controlled the compositional evolution of fluids,which might be the main reason for the diversity of Au or Sb mineralization.展开更多
Although previous researchers have attempted to decipher ore genesis and mineralization in the Erdaokan Ag-Pb-Zn deposit,some uncertainties regarding the mineralization process and evolution of both ore-forming fluids...Although previous researchers have attempted to decipher ore genesis and mineralization in the Erdaokan Ag-Pb-Zn deposit,some uncertainties regarding the mineralization process and evolution of both ore-forming fluids and magnetite types still need to be addressed.In this study,we obtained new EPMA,LA-ICP-MS,and in situ Fe isotope data from magnetite from the Erdaokan deposit,in order to better understand the mineralization mechanism and evolution of both magnetite and the ore-forming fluids.Our results identified seven types of magnetite at Erdaokan:disseminated magnetite(Mag1),coarse-grained magnetite(Mag2a),radial magnetite(Mag2b),fragmented fine-grained magnetite(Mag2c),vermicular gel magnetite(Mag3a1 and Mag3a2),colloidal magnetite(Mag3b)and dark gray magnetite(Mag4).All of the magnetite types were hydrothermal in origin and generally low in Ti(<400 ppm)and Ni(<800 ppm),while being enriched in light Fe isotopes(δ^(56)Fe ranging from−1.54‰to−0.06‰).However,they exhibit different geochemical signatures and are thus classified into high-manganese magnetite(Mag1,MnO>5 wt%),low-silicon magnetite(Mag2a-c,SiO_(2)<1 wt%),high-silicon magnetite(Mag3a-b,SiO_(2)from 1 to 7 wt%)and high-silicon-manganese magnetite(Mag4,SiO_(2)>1 wt%,MnO>0.2 wt%),each being formed within distinct hydrothermal environments.Based on mineralogy,elemental geochemistry,Fe isotopes,temperature trends,TMg-mag and(Ti+V)vs.(Al+Mn)diagrams,we propose that the Erdaokan Ag-Pb-Zn deposit underwent multi-stage mineralization,which can be broken down into four stages and nine sub-stages.Mag1,Mag2a-c,Mag3a-b and Mag4 were formed during the first sub-stage of each of the four stages,respectively.Additionally,fluid mixing,cooling and depressurization boiling were identified as the main mechanisms for mineral precipitation.The enrichment of Ag was significantly enhanced by the superposition of multi-stage ore-forming hydrothermal fluids in the Erdaokan Ag-Pb-Zn deposit.展开更多
The Xianghualing Sn-polymetallic orefield in Hunan Province, southern China, is a largesize tin orefield. Although numerous studies have been undertaken on this orefield, its genesis, mineralization age, and tectonic ...The Xianghualing Sn-polymetallic orefield in Hunan Province, southern China, is a largesize tin orefield. Although numerous studies have been undertaken on this orefield, its genesis, mineralization age, and tectonic setting are still controversial, mainly because of the lack of reliable geochronological data on tin mineralization. The ^40Ar^39Ar stepwise heating dating method was first employed on muscovite from different deposits in this orefield. The muscovite sample from the Xianghualing Sn-polymetallic deposit defines a plateau age of 154.4±1.1 Ma and an isochron age of 151.9±3.0 Ma; muscovite from the Xianghuapu W-polymetallic deposit yields a plateau age of 161.3±1.1 Ma and an isochron age of 160.0±3.2 Ma; muscovite from the Jianfengling greisen-type Sn-polymetallic deposit gives a plateau age of 158.7±1.2 Ma and an isochron age of 160.3±3.2 Ma. The tungsten-tin mineralization ages in the Xianghualing area are therefore restricted within 150-160 Ma. The tungstentin mineralization in Xianghualing occurred at the same time as the regional tin-tungsten mineralization including the Furong tin orefield, Shizhuyuan tungsten-tin polymetallic deposit and Yaogangxian tungsten-polymetallic deposit. Thus, the large-scale tungsten-tin metallogenesis in South China occurring at 160-150 Ma, probably is closely related to asthenospheric upwelling and crustmantle interaction under a geodynamic setting of crustal extension and lithosphere thinning during the transformation of tectonic regimes during the Mid-Late Jurassic.展开更多
Trace elements and rare earth elements(REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry.The results indicate that V,Cu,Sn,Ga,Cd,In,and Se are concentrated in sphalerite,Sb...Trace elements and rare earth elements(REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry.The results indicate that V,Cu,Sn,Ga,Cd,In,and Se are concentrated in sphalerite,Sb,As,Ge,and Tl are concentrated in galena,and almost all trace elements in pyrite are low.The Ga and Cd contents in the light-yellow sphalerites are higher than that in the brown and the black sphalerites.The contents of Ge,Tl,In,and Se in brown sphalerites are higher than that in light-yellow sphalerites and black sphalerites.It shows that REE concentrations are higher in pyrite than in sphalerite,and galena.In sphalerites,the REE concentration decreases from light-yellow sphalerites,brown sphalerites,to black sphalerites.The ratios of Ga/In are more than 10, and Co/Ni are less than 1 in the studied sphalerites and pyrites,respectively,indicating that the genesis of the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis associated with hydrothermal genesis.The relationship between LnGa and LnIn in sphalerite,and between LnBi and LnSb in galena,indicates that the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis.Based on the chondrite-normalized REE patterns,δEu is a negative anomaly(0.13-0.88),andδCe does not show obvious anomaly(0.88-1.31);all the samples have low total REE concentrations(〈3 ppm) and a wide range of light rare earth element/high rare earth element ratios(1.12-12.35).These results indicate that the ore-forming fluids occur under a reducing environment.Comparison REE compositions and parameters of sphalerites,galenas,pyrites,ores,altered dolostone rocks,strata carbonates,and the pyrite from Lower Carboniferous Datang Formation showed that the ore-forming fluids might come from polycomponent systems,that is,different chronostratigraphic units could make an important contribution to the ore-forming fluids.Combined with the tectonic setting and previous isotopic geochemistry evidence,we conclude that the ore-deposit genesis is hydrothermal,sedimentary reformed,with multisources characteristics of ore-forming fluids.展开更多
The Tianqiao Pb-Zn ore deposit of Guizhou Province, China, is located in the mid-east of the Sichuan-Yunnan-Guizhou Pb-Zn-Ag multi-metallic mineralization area, which is representative of the Pb-Zn ore de-posits in th...The Tianqiao Pb-Zn ore deposit of Guizhou Province, China, is located in the mid-east of the Sichuan-Yunnan-Guizhou Pb-Zn-Ag multi-metallic mineralization area, which is representative of the Pb-Zn ore de-posits in this area. It consists of three main orebodies, whose Pb+Zn reserves are more than 0.2 million ton. This paper analyzes the sulfur isotopic composition of these orebodies. The data show that the ore minerals (galena, sphalerite, pyrite) in these orebodies are enriched in heavy sulfur, with δ34SV-CDT values varying between 8.35‰ and 14.44‰, i.e. the δ34SV-CDT values of pyrite are between 12.81‰ and 14.44‰, the mean value is 13.40‰; the δ34SV-CDT values of sphalerite are range from 10.87‰ to 14.00‰, the mean value is 12.53‰; the δ34SV-CDT values of galena are range from 8.35‰ to 9.83‰, the mean value is 8.84‰, and they have the feature of δ34Spyrite>δ34Ssphalerite>δ34Sgalena, which indicates the sulfur isotope in ore-forming fluids has attained equilibrium. The δ34S V-CDT values of the deposit are close to those of sulfates from carbonate strata of different ages in the ore-field (15‰), which suggests that the sulfur in the ore-forming fluids should be derived from the thermo-chemical sulfate reduction of sulfates from the sedimentary strata.展开更多
Several Au deposits in Guizhou Province,southwest China,described as being similar to the highly productive Carlin-type gold deposits in northern Nevada.USA,were examined to identify similarities and differences betwe...Several Au deposits in Guizhou Province,southwest China,described as being similar to the highly productive Carlin-type gold deposits in northern Nevada.USA,were examined to identify similarities and differences between the two districts.Samples were collected along transects from lowto high-grade rock,where possible,and fram stockpiles at the Shuiyindong,Zimudang,Taipingdong,Yata and Jinfeng(formerly Lannigou)deposits.Methods used to examine ore and alteration minerals included hand-sample description:reflectance spectroscopy using an ASD Terraspec spectrometer;analyses of hand samples by carbonate staining with Alizaren red and potassium ferricyanide;transmitted and reflected light petrography;chemical analyses,mineral identification,and imaging using a JEOL.JSM-5610 scanning electron microscope:and quantitative chemical analyses using a JEOL JXA-8900 electron probe microanalyzer.Geochemical analyses of hand samples for 52 elements were done by ALS Chemex.Results indicate both similarities and differences between the two districts.Both districts have similar geologic histories.and deposits at both locations appear to have formed as a result of similar tectonic events.though the district in southwest China lacks evidence of eoeval felsic igneous activity;however,the ore-stage minerals and the fluids that produced the minerals and deposits have some significant differences.The Nevada deposits were dominated by fluid-rock reaction in which host rock Fe was sulfidized to form Au-bearing pyrite.Although ore fluids sulfidized host rock Fe in the Cuizhou deposits.the timing of Fe metasomatism is unknown,so whether the deposits formed in response to sulfidation or pyritization is unclear.Fluid-rock reaction between an acidic,aqueous fluid and highly reactive calcareous rocks in Nevada caused extensive decarbonatization of host rocks,jasperoid replacemerit of carbonate minerals,and alteration of silty rock components to illite and kaolinite.In Guizhou,CO2-bearing ore fluids with temperatures and pressures approaching 100℃ and 500 bars greater than temperatures and pressures detemained for ore fluids in the Nevada deposits,deposited Aubearing pyrite.In examined Guizhou deposits these fluids carbonatized host rocks and farmed both replacement and open-space-filling ore.The fluids,which may have been immiscible,were sufficiently overpressured to fracture wall rocks and to create significant open space filled by vein quartz.While deposit architecture,tectonic setting,and host rocks in Guizhou are quite similar to northern Nevada,ore and alteration minerals suggest that ore-forming processes in examined Guizhou deposits have important similarities to processes associated with formation of orogenic Au systems.The Guizhou deposits display characteristics of both Carlin-type and orogenic systems,perhaps indicating formation at conditions somewhat intermediate to conditions for Carlin-type deposits and orogenic systems.展开更多
All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn...All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn deposit in Yunnan, and the Meng'entaolegai Ag-Pb-Zn deposit in Inner Mongolia, the indium contents in ores range from 98×10^-6 to 236×10^-6 and show a good positive correlation with contents of zinc and tin, and their correlation coefficients are 0.8781 and 0.7430, respectively. The indium contents from such Sn-poor deposits as the Fozichong Pb-Zn deposit in Guangxi and the Huanren Pb-Zn deposit in Liaoning are generally lower than 10×10^-6, i.e., whether tin is present or not in a deposit implies the enrichment extent of indium in ores. Whether the In enrichment itself in the ore -forming fluids or the ore-forming conditions has actually caused the enrichment/depletion of indium in the deposits? After studying the fluid inclusions in quartz crystallized at the main stage of mineralization of several In-rich and In-poor deposits in China, this paper analyzed the contents and studied the variation trend of In, Sn, Pb and Zn in the ore-forming fluids. The results show that the contents of lead and zinc in the ore-forming fluids of In-rich and -poor deposits are at the same level, and the lead contents range from 22×10^-6 to 81×10^-6 and zinc from 164×10^-6 to 309×10^-6, while the contents of indium and tin in the ore-forming fluids of In-rich deposits are far higher than those of Inpoor deposits, with a difference of 1-2 orders of magnitude. Indium and tin contents in ore-forming fluid of In-rich deposits are 1.9×10^-6-4.1×10^-6 and 7×10^-6-55×10^-6, and there is a very good positive correlation between the two elements, with a correlation coefficient of 0.9552. Indium and tin contents in ore-forming fluid of In-poor deposits are 0.03×10^-6-0.09×10^-6 and 0.4×10^-6-2.0×10^-6, respectively, and there is no apparent correlation between them. This indicates, on one hand, that In-rich oreforming fluids are the material basis for the formation of In-rich deposits, and, on the other hand, tin probably played a very important role in the transport and enrichment of indium.展开更多
Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representat...Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representative of tungsten-bearing granite. The Xihuashan granite consists mainly of medium-grained porphyritic biotite granite, medium-grained biotite granite and fine-grained twomica granite, which correspond to LA-ICP-MS zircon U-Pb ages of 555.5±0.4 Ma, 553.0±0.6 Ma and 552.8±0.9 Ma, respectively. Rocks from the Xihuashan mining area displays high SlOe (73.85% to 76.49%) and NaeO+K20 contents (8.09% to 9.43%), belonging to high-K calc-alkaline series. They are metaluminous to weakly peraluminous with A/CNK values ranging from 0.96 to 5.06. All granites in this study area are rich in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti, Nb and Eu, especially depleted in medium-grained biotite granite and fine-grained two-mica granite. The medium-grained porphyritic biotite granites usually have high LREE concentrations, whereas medium-grained biotite granite and fine-grained two-mica granite displays high HREE contents. Our geochemical data reveal that the studied rocks are highly fractionated I-type granite. The magma underwent strong magma differentiation with decreasing temperature and increasing oxygen fugacity, which may explain the formation of three types of distinct granites. Variations of Rb, Sr and Ba concentrations in different type granites were controlled by fractional crystallization of biotite and feldspar. Fractional crystallization of monazite, allanite and apatite resulted in LREE changes in granite, and formation of garnet mainly caused HREE changes. Granites from the Xihuashan mining area have relatively high εd(t) values (-9.77 to -55.46), indicating that they were probably generated by partial melting of underlying Proterozoic metasedimentary rocks with minor addition of juvenile crust or mantlederived magmas.展开更多
The Gejiu tin polymetallic deposit, located in the southwest margin of the South China Belt bordering on the Yangtze Block, is hosted in Triassic carbonates. This study shows that there is an indium enrichment in the ...The Gejiu tin polymetallic deposit, located in the southwest margin of the South China Belt bordering on the Yangtze Block, is hosted in Triassic carbonates. This study shows that there is an indium enrichment in the ores.Indium mainly exists in sphalerite-rich massive sulfide ores with a concentration of 198.3–1570 ppm; the indium concentration in sphalerite ranges from 493.3 up to4781 ppm. The inferred indium reserve in the Gejiu Sn deposit is over 4000 t, indicating that the Gejiu tin deposit is a giant In-bearing Sn-polymetallic deposit, similar to the Dachang and Dulong in southwest China. Sphalerite with a high Fe value(8.05–13.27 wt%) is the predominant indium carrier mineral; meanwhile chalcopyrite plays the secondary indium carrier role. EPMA mapping result shows that indium is likely distributed homogeneously and presented as a substitution for Zn in sphalerite.展开更多
基金supported by the National Natural Science Foundation of China(92162218,42302101,42202099)the Guizhou Provincial Natural Science Foundation(ZK[2023]477)。
文摘Unraveling the precise mineralization age is vital to understand the geodynamic setting and ore-forming mechanism of the sediment-hosted Pb-Zn deposit;this has long been a challenge.The Sichuan-Yunnan-Guizhou(SYG)triangle in the southwestern margin of the Yangtze Block is a globally recognized carbonate-hosted Pb-Zn metallogenic province and also an essential part of the South China low-temperature metallogenic domain.This region has>30 million tons(Mt)Zn and Pb resources and shows the enrichment of dispersed metals,such as Ga,Ge,Cd,Se,and Tl.During the past 2 decades,abundant data on mineralization ages of Pb-Zn deposits within the SYG triangle have been documented based on various radioisotopic dating methods,resulting in significant progress in understanding the geodynamic background and ore formation of Pb-Zn deposits hosted in sedimentary rocks at SYG triangle.This paper provides a comprehensive summary of the geochronological results and Pb-Sr isotopic data regarding Pb-Zn deposits in the SYG triangle,which identified two distinct Pb-Zn mineralization periods influencing the dynamic processes associated with the expansion and closure of the Paleo-Tethys Ocean in the western margin of the Yangtze Block.The predominant phase of Pb-Zn mineralization at SYG triangle spanned from the Middle Triassic to Early Jurassic(226-191 Ma),which was intensely correlated with the large-scale basin fluid transport triggered by the closure of the Paleo-Tethys Ocean and Indosinian orogeny.The secondary Pb-Zn mineralization phase occurred during the Late Devonian to Late Carboniferous and was controlled by extensional structures associated with the expansion of the Paleo-Tethys Ocean.Further investigation is necessary to clarify the occurrence and potential factors involved in the Pb-Zn mineralization events during the Late Devonian to Late Carboniferous.
基金jointly by National Basic Research Program of China(973 Program) (2007CB411402)the Knowledge innovation project of Chinese Academy of Sciences(KZCX2-YW-Q04-05, KZCX2-YW-111-03)the National Natural Science Foundation of China(No.40573036).
文摘The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million tons at Pb+Zn grade of higher than 25%and contains abundant associated metals,such as Ag,Ge,Cd,and Ga.The deposits are hosted in the Lower Carboniferous carbonate strata and the Permian Emeishan basalts which distributed in the northern and southwestern parts of the orefield.Calcite is the only gangue mineral in the primary ores of the deposits and can be classified into three types,namely lumpy,patch and vein calcites in accordance with their occurrence.There is not intercalated contact between calcite and ore minerals and among the three types of calcite,indicating that they are the same ore-forming age with different stages and its forming sequence is from lumpy to patch to vein calcites. This paper presents the rare earth element(REE) and C-O isotopic compositions of calcites in the Huize Pb-Zn deposits.From lumpy to patch to vein calcites,REE contents decrease as LREE/ HREE ratios increase.The chondrite-normalized REE patterns of the three types of calcites are characterized by LREE-rich shaped,in which the lumpy calcite shows(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〈1,the patch calcite has(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〉1,and the vein calcite displays(La)_N〉(Ce)_N〉(Pr)_N〉(Nd)_N with Eu/Eu~*〉1.The REE geochemistry of the three types of calcite is different from those of the strata of various age and Permian Emeishan basalt exposed in the orefield.Theδ^(13) C_(PDb) andδ^(18)O_(Smow) values of the three types of calcites vary from-3.5‰to-2.1‰and 16.7‰to 18.6‰,respectively,falling within a small field between primary mantle and marine carbonate in theδ^(13)C_(PDb) vsδ^(18)O_(Smow) diagram. Various lines of evidence demonstrate that the three types of calcites in the deposits are produced from the same source with different stages.The ore-forming fluids of the deposits resulted from crustal -mantle mixing processes,in which the mantle-derived fluid components might be formed from degassing of mantle or/and magmatism of the Permian Emeishan basalts,and the crustal fluid was mainly provided by carbonate strata in the orefield.The ore-forming fluids in the deposits were homogenized before mineralization,and the ore-forming environment varied from relatively reducing to oxidizing.
基金financially supported by the Chinese 973 project(2012CB416804)the ‘‘CAS Hundred Talents’’ Project from the Chinese Academy of Sciences(KZCX2-YW-BR-09)to Qi Liang
文摘Laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) was used to determine the trace element concentrations of magnetite from the Heifengshan, Shuangfengshan, and Shaquanzi Fe(–Cu) deposits in the Eastern Tianshan Orogenic Belt. The magnetite from these deposits typically contains detectable Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn and Ga. The trace element contents in magnetite generally vary less than one order of magnitude. The subtle variations of trace element concentrations within a magnetite grain and between the magnetite grains in the same sample probably indicate local inhomogeneity of ore–forming fluids. The variations of Co in magnetite between samples are probably due to the mineral proportion of magnetite and pyrite. Factor analysis has discriminated three types of magnetite: Ni–Mn–V–Ti(Factor 1), Mg–Al–Zn(Factor 2), and Ga– Co(Factor 3) magnetite. Magnetite from the Heifengshan and Shuangfengshan Fe deposits has similar normalized trace element spider patterns and cannot be discriminated according to these factors. However, magnetite from the Shaquanzi Fe–Cu deposit has affinity to Factor 2 with lower Mg and Al but higher Zn concentrations, indicating that the ore–forming fluids responsible for the Fe–Cu deposit are different from those for Fe deposits. Chemical composition of magnetite indicates that magnetite from these Fe(–Cu) deposits was formed by hydrothermal processes rather than magmatic differentiation. The formation of these Fe(–Cu) deposits may be related to felsic magmatism.
基金financially supported jointly by the State Science and Technology Supporting Program(2006BAB01A13)the Self-research Project funded by the State Key Laboratory of Ore Deposit Geochemistry(Ore Deposit Special Research Project 2008.3-2)Guizhou Provincial Bureau of Geology and Mineral Resource Exploration and Development[Qian Di Kuang Ke(2009)No.11]
文摘Ore deposits (occurrences) of Au, As, Sb, Hg, etc. distributed in Southwest Guizhou constitute the important portion of the low-temperature metallogenic domain covering a large area in Southwest China, with the Carlin-type Au and Sb deposits being the most typical ones. In this paper the Au and Sb ore deposits are taken as the objects of study. Through the petrographic analysis, microthermomitric measurement and Raman spectrophic analysis of fluid inclusions in gangue minerals and research on the S and C isotopic compositions in the gold ore deposits we can reveal the sources of ore-forming materials and ore-forming fluids and the rules of ore fluid evolution. Ore deposits of Au, Sb, etc. are regionally classified as the products of ore fluid evolution, and their ore-forming materials and ore fluids were probably derived mainly from the deep interior of the Earth. Fluid inclusion studies have shown that the temperatures of Au mineralization are within the range of 170-361℃,the salinities are 0.35 wt%-8 wt% NaCl eq.; the temperatures of Sb mineralization are 129.4-214℃ and the salinities are 0.18 wt%- 3.23 wt% NaCl eq.; the ore-forming fluid temperatures and salinities tend to decrease progressively. In the early stage (Au metallogenic stage) the ore-forming fluids contained large amounts of volatile components such as CO2, CH4, N2 and H2S, belonging to the H2O-CO2-NaCl fluid system; in the late stage (Sb metallogenic stage) the ore-forming fluids belong to the Sb-bearing H2O-NaCl system. The primitive ore-forming fluids may have experienced at least two processes of immiscibility: (1) when early ore-bearing hydrothermal solutions passed through rock strata of larger porosity or fault broken zones, CO2, CH4, N2 would escape from them, followed by the release of pressure, resulting in pressure release and boiling of primitive homogenous fluids, thereafter giving rise to their phase separation, thus leading to Au unloading and mineralization; and (2) in the late stage (Sb metallogenic stage ) a large volume of meteoric water was involved in the ore-forming fluids, leading to fluid boiling as a result of their encounter, followed by the drop of fluid temperature. As a result, the dissolubility of Sb decreased so greatly that Sb was enriched and precipitated as ores. Due to differences in physic-chemical conditions between Au and Sb precipitates, Au and Sb were respectively precipitated in different structural positions, thus creating such a phenomenon of Au/Sb paragenesis and differentiation in space.
基金Project(41202051) supported by the National Natural Science Foundation of ChinaProject(2012M521721) supported by China Postdoctoral Science FoundationProject(CSUZC2013021) supported by Valuable Equipment Open Sharing Fund of Central South University,China
文摘No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are mostly positive and characterized by rich sulfur(S) content. This suggests that the sulfur of the Dafulou ore deposit is derived from magma and relates to the Longxianggai concealed granite, which points to the important role of magma during mineralization and implyies the product of the active continental margin. By comparison between the Dafulou and the Kengma tin deposit, significant differences exist in the sulfur isotope composition. In the Kengma deposit, the sulfur isotope composition is characterized by the high negative value, which is different from the Dafulou tin-polymetallic deposit. The difference of the enrichment and fractionation of the sulfur isotope is the synthesized result of the metallogenic conditions. It also has the difference in the metallogenic environment and metallogenic characteristics of the deposit in the same ore belt.
基金the State Key Laboratory of Ore Deposit Geochemistry, Chinese Academy of Sciences, for supporting this projectfunded by the National Natural Science Foundation of China (Grant No. 41372105)the 12th Five-Year Plan Project of the State Key Laboratory of Ore Deposit Geochemistry, Chinese Academy of Sciences (SKLODGZY125-04)
文摘The Shangling vanadium deposit, which occurs in the Lower Devonian Tangding formation black rock series strata, has V2O5 reserves of more than 1.5 million tons and prospective reserves of more than 2 million tons. Preliminary studies on the occurrence state of vanadium(V) in this deposit have been conducted by artificial heavy minerals concentrates, leaching experiments, scanning and transmission electron microscopy and X-ray powder diffraction.These experiments have revealed no independent vanadium mineral occurrences in the Shangling vanadium deposit and the percentages of water-soluble vanadium, hydrochloric acid soluble vanadium and HF soluble vanadium were1.93 %, 21.42 % and 76.47 %, respectively. Based on our data and earlier research, we estimate that the valences state of V absorbed onto the surface of organic matter or clastic particles are +5 and +4, accounting for 10.00 % and13.35 % of the total amount of V, respectively and the valences state of V that exist in the octahedral crystal lattice of authigenic illite include +3 and +4, accounting for71.64 % and 4.83 % of the total amount of V, respectively.By calculating the correlation between the total organic carbon and V, we infer that after deposition and before entering the crystal lattice of illite, V occurs in the form of humate complex or is adsorbed by organic matter. About4.24 % of the Al is in the octahedral crystal lattice of illite,which was replaced by the vanadium under the metallogenic environments of Shanglin.
基金suppor ted by Chinese NSF projects(42173021,41873024,42130114)the strategic priority research program(B)of CAS(XDB41000000)+1 种基金the preresearch Project on Civil Aerospace Technologies No.D020202 funded by the Chinese National Space Administration(CNSA)Guizhou Provincial 2021 Science and Technology Subsidies(No.GZ2021SIG)。
文摘Theoretical studies of the diffusionalisotope effect in solids are still stuck in the 1960s and 1970s.With the development of high spatial resolution mass spectrometers,isotopic data of mineral grains are rapidly accumulated.To dig up information from these data,molecularlevel theoretical models are urgently needed.Based on the microscopic definition of the diffusion coe fficient(D),a new theoretical framework for calculating the diffusional isotope effect(DIE(v))(intermsofD*/D)forvacancy-mediated impurity diffusion in solids is provided based on statistical mechanics formalism.The newly derived equation shows that theDIE(v)can be easily calculated as long as the vibration frequencies of isotope-substituted solids are obtained.The calculatedDIE(v)values of^(199)Au/^(195)Au and^(60)Co/^(57)Co during diffusion in Cu and Au metals are all within 1%of errors compared to the experimental data,which shows that this theoretical model is reasonable and precise.
基金financially supported jointly by the National Natural Science Foundation of China (Grant Nos. 41102055and 41102053)the National Basic Research Program of China (Grant No. 2007CB411402)
文摘The Pb-Zn metallogenic district in NW Guizhou Province is an important part of the Yun-nan-Sichuan-Guizhou Pb-Zn metallogenic province, and also is one of the most important Pb-Zn producers in China. The hosting rocks of the Pb-Zn deposits are Devonian to Permian carbonate rocks, and the basement rocks are meta-sedimentary and igneous rocks of the Proterozoic Kunyang and Huili groups. The ore minerals are composed of sphalerite, galena and pyrite, and the gangue minerals are include calcite and dolomite. Geology and C-O isotope of these deposits were studied in this paper. The results show that δ13C and δ18O values of hydrothermal calcite, altered wall rocks-dolostone, sedimentary calcite and hosting carbonate rocks range from -5.3‰ to -0.6 ‰ (mean -3.4‰) and +11.3‰ to +20.9 ‰ (mean +17.2‰), -3.0‰ to +0.9 ‰ (mean -1.3‰) and +17.0‰ to +20.8‰ (mean +19.7‰), +0.6‰ to +2.5 ‰ (mean +1.4‰) and +23.4‰ to +26.5 ‰ (mean +24.6‰), and -1.8‰ to +3.9‰ (mean +0.7‰) and +21.0‰ to +26.8‰ (mean +22.9‰), respectively, implying that CO2 in the ore-forming fluids was mainly a result of dissolution of Devonian and Carboniferous carbonate rocks. However, it is difficult to evaluate the contribution of sediment de-hydroxylation. Based on the integrated analysis of geology, C and O isotopes, it is believed that the ore-forming fluids of these carbonate-hosted Pb-Zn deposits in this area were derived from multiple sources, including hosting carbonate rocks, Devonian to Permian sedimentary rocks and basement rocks (the Kun-yang and Huili groups). Therefore, the fluids mixing is the main precipitation mechanism of the Pb-Zn deposit in this province.
基金This work is financially supported jointly by the National Natural Science Foundation of China(Grant No.40603013)the Cooperative Project(Grant No.2000YK-04)Conducted by Universities in Yunnan Province and the Chinese Academy of Sciences.
文摘Studies on the helium, lead and sulfur isotopic composition were performed of the Gejiu super-large Sn-polymetallic ore deposit. The results indicated that the ore-forming materials came from different sources and the deposit is a product of superimposed mineralization. The deposit is characterized by multi-source and multi-period mineralization, which experienced submarine hydrothermal deposition and Late Yanshanian magmatic hydrothermal mineralization. It is held that the Gejiu super-large Sn-polymetallic ore deposit is a multi-genesis deposit.
基金financially supported by the National Natural Science Foundation of China(No.42102079)the Natural Science Foundation of Sichuan Province(No.22NSFSC2765)+1 种基金State Key Laboratory of Ore Deposit Geochemistry Key Laboratory Open Project Fund(No.201804)the Southwest University of Science and Technology Doctoral Fund(No.16zx7132)。
文摘The Baoshan Cu–Pb–Zn deposit, located in the central part of the Qin–Hang belt in South China, is closely related to the granodiorite-porphyry. However, the characteristics and the source of the ore-forming fluid are still ubiquitous. According to the crosscutting relationships between veinlets and their mineral assemblages, three stages of hydrothermal mineralization in this deposit were previously distinguished. In this contribution, two different colored fluorites from the major sulfide mineralization stage are recognized:(1) green fluorites coexisting with Pb–Zn ores;and(2) violet fluorites coexisting with pyrite ores. Y/Ho ratios verify the green fluorites and violet fluorites were co-genetic. The fluorites display elevated(La/Yb)Nratios, which decrease from 1201 to 5710 for green fluorites to 689–1568 for violet fluorites, indicating that they precipitated at the early hydrothermal sulfide stage,and Pb–Zn ores crystallized earlier than pyrite ores. The similar Tb/La ratios of the fluorites also indicate that they precipitated at an early stage within a short time. From the green fluorites to violet fluorites, the total rare earth element(ΣREE)concentrationsdecreasefrom1052–1680 ppm to 148–350 ppm, indicating that the green fluorites precipitated from a more acidic fluid. The Eu/Eu*ratios increase from 0.17 to 0.30 for green fluorites to0.29–0.48 for violet fluorites, and the Ce/Ce* ratios decrease from 1.08–1.13 to 0.93–1.11, suggesting a gradual increase in oxygen fugacity(fO_(2)) and pH value of the mineralization fluid. Though the fluorites display similar REE patterns to the granodiorite-porphyry and limestone,the ΣREE concentrations of the fluorites are significantly higher than those of limestone and the granodiorite-porphyry, suggesting that an important undetected non-magmatic source is involved to provide sufficient REE for fluorites. The most plausible mechanism is fluid mixing between magma fluid and an undetected non-magmatic fluid.
基金the National Science Fund for Distinguished Young Scholars(42025301)Natural Science Foundation of China(41673057)。
文摘South China can be divided into four metallogenic belts:The Middle-Lower Yangtze Metallogenic Belt(MLYB),Qinzhou-Hangzhou Metallogenic Belt(QHMB),Nanling Metallogenic Belt(NLMB),and Wuyi Metallogenic Belt(WYMB).The major mineralization in the four metallogenic belts is granite-related Cu–Au–Mo and porphyrite Fe-apatite,porphyry Cu(Au),and epithermal Pb–Zn–Ag,hydrothermal Cu–Au–Pb–Zn–Ag,and granite-related skarn-type and quartz-veins W–Sn,respectively.Low-temperature thermochronology,including fissiontrack and U-Th/He dating,has been widely used to constrain tectonic thermal evolution and ore deposits preservation.Understanding fission-track annealing and He diffusion kinetics in accessory minerals,such as zircon and apatite,is essential for dating and applications.In this study,previous zircon fission-track(ZFT)and apatite fission-track(AFT)ages in South China were collected.The result shows that the ZFT ages are mainly concentrated at140–90 Ma,and the AFT ages are mainly distributed at70–40 Ma.The age distribution and inversion temperature–time paths reveal heterogeneous exhumation histories in South China.The MLYB experienced Late CretaceousCenozoic extremely slow exhumation after rapid cooling in the Early Cretaceous.The northern QHMB(i.e.from southern Anhui province to the Hangzhou Bay)had a relatively faster rate of uplifting and denudation than the southern QHMB in the Cretaceous.Subsequently,the northern QHMB rapidly exhumed,while the continuously slow exhumation operated the southern QHMB in the Cenozoic.The southern NLMB had a more rapid cooling rate than the northern NLMB during the Cretaceous time,and the whole NLMB experienced rapid cooling in the Cenozoic,except that the southern Hunan province had the most rapid cooling rate.The WYMB possibly had experienced slow exhumation since the Late Cretaceous.The exhumation thickness of the four metallogenic belts since90 Ma is approximately calculated as follows:the MLYB≤3.5 km,the northern QHMB concentrated at3.5–5.5 km,and the southern QHMB usually less than3.5 km,the NLMB 4.5–6.5 km and the WYMB<3.5 km.The exhumation thickness of the NLMB is corresponding to the occurrence of the world-class W deposits,which were emplaced into a deeper depth of 1.5–8 km.As such,we infer that the uplifting and denudation processes of the four metallogenic belts have also played an important role in dominated ore deposits.
基金the National 973 Program of China(2014CB440906)。
文摘The Youjiang Basin is characterized by a wide distribution of Au and Sb deposits.These deposits are mainly hosted by sedimentary rocks from Cambrian to Triassic and are structurally controlled by faults and folds.Three types of Sb mineralization can be distinguished based on geologic characteristics,economic metals,and mineral associations.The first type is dominated by Sb mineralization but contains minor or little Au,similar to the large Qinglong deposit.The second type has a spatial association with the gold deposit but formed independent Sb mineralization,reminiscent of the Badu deposit.In the third type,Sb generally formed as an accompanying element in the Carlin-type gold deposit,and stibnite occurred as euhedral crystals filling the open space and faults in the late stage of gold mineralization,analogous to the Yata deposit.Trace element concentrations and sulfur isotopic ratio of stibnite,and oxygen isotope of stibnite bearing quartz were analyzed to infer the ore source(s)for Sb mineralization and genesis.To distinguish the various types of stibnite mineralization between the deposits,Cu,Pb,and As have recognized most diagnostic,with an elevated concentration in Au and Au-Sb deposits and depleted in Sb deposit.Theδ34S isotopic composition of stibnite samples from three deposits show a wide variation,ranging from-6.6%to+17.45%.Such isotopic values may indicate the sedimentary sulfur source,introduced by fluid–rock interaction.On the other hand,fluid mixing of several end members cannot be excluded.The calculatedδ18O isotopic data of Sb-bearing quartz show the initial ore fluid in Au and Au-Sb deposits most likely have a magmatic or metamorphic origin that enriched during fluid–rock interaction,and Sb deposit characterized by initial meteoric water.From these data,we proposed that different lithologies,fluid–rock interaction,fluid pathways,and different ore fluids controlled the compositional evolution of fluids,which might be the main reason for the diversity of Au or Sb mineralization.
基金financially supported by the Heilongjiang Provincial Key R&D Program Project(No.GA21A204)Heilongjiang Provincial Natural Science Foundation of China(No.LH2022D031)the Research Project of Heilongjiang Province Bureau of Geology and Mineral Resources(No.HKY202302).
文摘Although previous researchers have attempted to decipher ore genesis and mineralization in the Erdaokan Ag-Pb-Zn deposit,some uncertainties regarding the mineralization process and evolution of both ore-forming fluids and magnetite types still need to be addressed.In this study,we obtained new EPMA,LA-ICP-MS,and in situ Fe isotope data from magnetite from the Erdaokan deposit,in order to better understand the mineralization mechanism and evolution of both magnetite and the ore-forming fluids.Our results identified seven types of magnetite at Erdaokan:disseminated magnetite(Mag1),coarse-grained magnetite(Mag2a),radial magnetite(Mag2b),fragmented fine-grained magnetite(Mag2c),vermicular gel magnetite(Mag3a1 and Mag3a2),colloidal magnetite(Mag3b)and dark gray magnetite(Mag4).All of the magnetite types were hydrothermal in origin and generally low in Ti(<400 ppm)and Ni(<800 ppm),while being enriched in light Fe isotopes(δ^(56)Fe ranging from−1.54‰to−0.06‰).However,they exhibit different geochemical signatures and are thus classified into high-manganese magnetite(Mag1,MnO>5 wt%),low-silicon magnetite(Mag2a-c,SiO_(2)<1 wt%),high-silicon magnetite(Mag3a-b,SiO_(2)from 1 to 7 wt%)and high-silicon-manganese magnetite(Mag4,SiO_(2)>1 wt%,MnO>0.2 wt%),each being formed within distinct hydrothermal environments.Based on mineralogy,elemental geochemistry,Fe isotopes,temperature trends,TMg-mag and(Ti+V)vs.(Al+Mn)diagrams,we propose that the Erdaokan Ag-Pb-Zn deposit underwent multi-stage mineralization,which can be broken down into four stages and nine sub-stages.Mag1,Mag2a-c,Mag3a-b and Mag4 were formed during the first sub-stage of each of the four stages,respectively.Additionally,fluid mixing,cooling and depressurization boiling were identified as the main mechanisms for mineral precipitation.The enrichment of Ag was significantly enhanced by the superposition of multi-stage ore-forming hydrothermal fluids in the Erdaokan Ag-Pb-Zn deposit.
基金the Innovative Project of the Chinese Academy of Sciences (Grant No. KZCX3-SW-125) National Natural Science Foundation of China (Grant No. 40472053 , No. 40673021).
文摘The Xianghualing Sn-polymetallic orefield in Hunan Province, southern China, is a largesize tin orefield. Although numerous studies have been undertaken on this orefield, its genesis, mineralization age, and tectonic setting are still controversial, mainly because of the lack of reliable geochronological data on tin mineralization. The ^40Ar^39Ar stepwise heating dating method was first employed on muscovite from different deposits in this orefield. The muscovite sample from the Xianghualing Sn-polymetallic deposit defines a plateau age of 154.4±1.1 Ma and an isochron age of 151.9±3.0 Ma; muscovite from the Xianghuapu W-polymetallic deposit yields a plateau age of 161.3±1.1 Ma and an isochron age of 160.0±3.2 Ma; muscovite from the Jianfengling greisen-type Sn-polymetallic deposit gives a plateau age of 158.7±1.2 Ma and an isochron age of 160.3±3.2 Ma. The tungsten-tin mineralization ages in the Xianghualing area are therefore restricted within 150-160 Ma. The tungstentin mineralization in Xianghualing occurred at the same time as the regional tin-tungsten mineralization including the Furong tin orefield, Shizhuyuan tungsten-tin polymetallic deposit and Yaogangxian tungsten-polymetallic deposit. Thus, the large-scale tungsten-tin metallogenesis in South China occurring at 160-150 Ma, probably is closely related to asthenospheric upwelling and crustmantle interaction under a geodynamic setting of crustal extension and lithosphere thinning during the transformation of tectonic regimes during the Mid-Late Jurassic.
基金supported by the National Basic Research Program of China(grant no.2007CB411402)
文摘Trace elements and rare earth elements(REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry.The results indicate that V,Cu,Sn,Ga,Cd,In,and Se are concentrated in sphalerite,Sb,As,Ge,and Tl are concentrated in galena,and almost all trace elements in pyrite are low.The Ga and Cd contents in the light-yellow sphalerites are higher than that in the brown and the black sphalerites.The contents of Ge,Tl,In,and Se in brown sphalerites are higher than that in light-yellow sphalerites and black sphalerites.It shows that REE concentrations are higher in pyrite than in sphalerite,and galena.In sphalerites,the REE concentration decreases from light-yellow sphalerites,brown sphalerites,to black sphalerites.The ratios of Ga/In are more than 10, and Co/Ni are less than 1 in the studied sphalerites and pyrites,respectively,indicating that the genesis of the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis associated with hydrothermal genesis.The relationship between LnGa and LnIn in sphalerite,and between LnBi and LnSb in galena,indicates that the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis.Based on the chondrite-normalized REE patterns,δEu is a negative anomaly(0.13-0.88),andδCe does not show obvious anomaly(0.88-1.31);all the samples have low total REE concentrations(〈3 ppm) and a wide range of light rare earth element/high rare earth element ratios(1.12-12.35).These results indicate that the ore-forming fluids occur under a reducing environment.Comparison REE compositions and parameters of sphalerites,galenas,pyrites,ores,altered dolostone rocks,strata carbonates,and the pyrite from Lower Carboniferous Datang Formation showed that the ore-forming fluids might come from polycomponent systems,that is,different chronostratigraphic units could make an important contribution to the ore-forming fluids.Combined with the tectonic setting and previous isotopic geochemistry evidence,we conclude that the ore-deposit genesis is hydrothermal,sedimentary reformed,with multisources characteristics of ore-forming fluids.
基金supported by the National Basic Research Program of China (No. 2007CB411402)the National Natural Science Foundation of China (Grant No. 40573036)
文摘The Tianqiao Pb-Zn ore deposit of Guizhou Province, China, is located in the mid-east of the Sichuan-Yunnan-Guizhou Pb-Zn-Ag multi-metallic mineralization area, which is representative of the Pb-Zn ore de-posits in this area. It consists of three main orebodies, whose Pb+Zn reserves are more than 0.2 million ton. This paper analyzes the sulfur isotopic composition of these orebodies. The data show that the ore minerals (galena, sphalerite, pyrite) in these orebodies are enriched in heavy sulfur, with δ34SV-CDT values varying between 8.35‰ and 14.44‰, i.e. the δ34SV-CDT values of pyrite are between 12.81‰ and 14.44‰, the mean value is 13.40‰; the δ34SV-CDT values of sphalerite are range from 10.87‰ to 14.00‰, the mean value is 12.53‰; the δ34SV-CDT values of galena are range from 8.35‰ to 9.83‰, the mean value is 8.84‰, and they have the feature of δ34Spyrite>δ34Ssphalerite>δ34Sgalena, which indicates the sulfur isotope in ore-forming fluids has attained equilibrium. The δ34S V-CDT values of the deposit are close to those of sulfates from carbonate strata of different ages in the ore-field (15‰), which suggests that the sulfur in the ore-forming fluids should be derived from the thermo-chemical sulfate reduction of sulfates from the sedimentary strata.
基金We would also like to acknowledge financial support from Key Project 40930423 from the National Natural Science Foun dation of China.
文摘Several Au deposits in Guizhou Province,southwest China,described as being similar to the highly productive Carlin-type gold deposits in northern Nevada.USA,were examined to identify similarities and differences between the two districts.Samples were collected along transects from lowto high-grade rock,where possible,and fram stockpiles at the Shuiyindong,Zimudang,Taipingdong,Yata and Jinfeng(formerly Lannigou)deposits.Methods used to examine ore and alteration minerals included hand-sample description:reflectance spectroscopy using an ASD Terraspec spectrometer;analyses of hand samples by carbonate staining with Alizaren red and potassium ferricyanide;transmitted and reflected light petrography;chemical analyses,mineral identification,and imaging using a JEOL.JSM-5610 scanning electron microscope:and quantitative chemical analyses using a JEOL JXA-8900 electron probe microanalyzer.Geochemical analyses of hand samples for 52 elements were done by ALS Chemex.Results indicate both similarities and differences between the two districts.Both districts have similar geologic histories.and deposits at both locations appear to have formed as a result of similar tectonic events.though the district in southwest China lacks evidence of eoeval felsic igneous activity;however,the ore-stage minerals and the fluids that produced the minerals and deposits have some significant differences.The Nevada deposits were dominated by fluid-rock reaction in which host rock Fe was sulfidized to form Au-bearing pyrite.Although ore fluids sulfidized host rock Fe in the Cuizhou deposits.the timing of Fe metasomatism is unknown,so whether the deposits formed in response to sulfidation or pyritization is unclear.Fluid-rock reaction between an acidic,aqueous fluid and highly reactive calcareous rocks in Nevada caused extensive decarbonatization of host rocks,jasperoid replacemerit of carbonate minerals,and alteration of silty rock components to illite and kaolinite.In Guizhou,CO2-bearing ore fluids with temperatures and pressures approaching 100℃ and 500 bars greater than temperatures and pressures detemained for ore fluids in the Nevada deposits,deposited Aubearing pyrite.In examined Guizhou deposits these fluids carbonatized host rocks and farmed both replacement and open-space-filling ore.The fluids,which may have been immiscible,were sufficiently overpressured to fracture wall rocks and to create significant open space filled by vein quartz.While deposit architecture,tectonic setting,and host rocks in Guizhou are quite similar to northern Nevada,ore and alteration minerals suggest that ore-forming processes in examined Guizhou deposits have important similarities to processes associated with formation of orogenic Au systems.The Guizhou deposits display characteristics of both Carlin-type and orogenic systems,perhaps indicating formation at conditions somewhat intermediate to conditions for Carlin-type deposits and orogenic systems.
基金the Key 0rientation Research Project of the Chinese Academy of Sciences (KZCX2-YW- 111);the National Natural Science Foundation of China (Grant Nos. 40172037 and 40072036) for its financial support.
文摘All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn deposit in Yunnan, and the Meng'entaolegai Ag-Pb-Zn deposit in Inner Mongolia, the indium contents in ores range from 98×10^-6 to 236×10^-6 and show a good positive correlation with contents of zinc and tin, and their correlation coefficients are 0.8781 and 0.7430, respectively. The indium contents from such Sn-poor deposits as the Fozichong Pb-Zn deposit in Guangxi and the Huanren Pb-Zn deposit in Liaoning are generally lower than 10×10^-6, i.e., whether tin is present or not in a deposit implies the enrichment extent of indium in ores. Whether the In enrichment itself in the ore -forming fluids or the ore-forming conditions has actually caused the enrichment/depletion of indium in the deposits? After studying the fluid inclusions in quartz crystallized at the main stage of mineralization of several In-rich and In-poor deposits in China, this paper analyzed the contents and studied the variation trend of In, Sn, Pb and Zn in the ore-forming fluids. The results show that the contents of lead and zinc in the ore-forming fluids of In-rich and -poor deposits are at the same level, and the lead contents range from 22×10^-6 to 81×10^-6 and zinc from 164×10^-6 to 309×10^-6, while the contents of indium and tin in the ore-forming fluids of In-rich deposits are far higher than those of Inpoor deposits, with a difference of 1-2 orders of magnitude. Indium and tin contents in ore-forming fluid of In-rich deposits are 1.9×10^-6-4.1×10^-6 and 7×10^-6-55×10^-6, and there is a very good positive correlation between the two elements, with a correlation coefficient of 0.9552. Indium and tin contents in ore-forming fluid of In-poor deposits are 0.03×10^-6-0.09×10^-6 and 0.4×10^-6-2.0×10^-6, respectively, and there is no apparent correlation between them. This indicates, on one hand, that In-rich oreforming fluids are the material basis for the formation of In-rich deposits, and, on the other hand, tin probably played a very important role in the transport and enrichment of indium.
基金supported by the National Key Basic Research Program(2012CB416700,2007CB411408),a special fund managed by the State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,and the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences in Wuhan
文摘Mesozoic granitic intrusions are widely distributed in the Nanling region, South China. Yanshanian granites are closely connected with the formation of tungsten deposits. The Xihuashan granite is a typical representative of tungsten-bearing granite. The Xihuashan granite consists mainly of medium-grained porphyritic biotite granite, medium-grained biotite granite and fine-grained twomica granite, which correspond to LA-ICP-MS zircon U-Pb ages of 555.5±0.4 Ma, 553.0±0.6 Ma and 552.8±0.9 Ma, respectively. Rocks from the Xihuashan mining area displays high SlOe (73.85% to 76.49%) and NaeO+K20 contents (8.09% to 9.43%), belonging to high-K calc-alkaline series. They are metaluminous to weakly peraluminous with A/CNK values ranging from 0.96 to 5.06. All granites in this study area are rich in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti, Nb and Eu, especially depleted in medium-grained biotite granite and fine-grained two-mica granite. The medium-grained porphyritic biotite granites usually have high LREE concentrations, whereas medium-grained biotite granite and fine-grained two-mica granite displays high HREE contents. Our geochemical data reveal that the studied rocks are highly fractionated I-type granite. The magma underwent strong magma differentiation with decreasing temperature and increasing oxygen fugacity, which may explain the formation of three types of distinct granites. Variations of Rb, Sr and Ba concentrations in different type granites were controlled by fractional crystallization of biotite and feldspar. Fractional crystallization of monazite, allanite and apatite resulted in LREE changes in granite, and formation of garnet mainly caused HREE changes. Granites from the Xihuashan mining area have relatively high εd(t) values (-9.77 to -55.46), indicating that they were probably generated by partial melting of underlying Proterozoic metasedimentary rocks with minor addition of juvenile crust or mantlederived magmas.
基金supported by the CAS/SAFEA International Partnership Program for Creative Research Teams (KZZD-EW-TZ-20)the National 973 Program of China (2015CB452603)China Geology Survey (12120113078200)
文摘The Gejiu tin polymetallic deposit, located in the southwest margin of the South China Belt bordering on the Yangtze Block, is hosted in Triassic carbonates. This study shows that there is an indium enrichment in the ores.Indium mainly exists in sphalerite-rich massive sulfide ores with a concentration of 198.3–1570 ppm; the indium concentration in sphalerite ranges from 493.3 up to4781 ppm. The inferred indium reserve in the Gejiu Sn deposit is over 4000 t, indicating that the Gejiu tin deposit is a giant In-bearing Sn-polymetallic deposit, similar to the Dachang and Dulong in southwest China. Sphalerite with a high Fe value(8.05–13.27 wt%) is the predominant indium carrier mineral; meanwhile chalcopyrite plays the secondary indium carrier role. EPMA mapping result shows that indium is likely distributed homogeneously and presented as a substitution for Zn in sphalerite.