Dear Editor,Two-dimensional(2-D) systems have wide applications in image data processing,gas absorption and fluid dynamics analysis [1]-[3].When there exist abrupt changes in 2-D systems,they are usually modeled by 2-...Dear Editor,Two-dimensional(2-D) systems have wide applications in image data processing,gas absorption and fluid dynamics analysis [1]-[3].When there exist abrupt changes in 2-D systems,they are usually modeled by 2-D Markov jump systems(MJSs) or 2-D semi-Markov jump systems(SMJSs).This letter investigates the control of 2-D SMJSs based on a novel mode generation mechanism,which could avoid mode ambiguousness phenomenon caused by the evolution of system mode in two different directions.The criterion that guarantees the almost surely exponential stability of the system is obtained.A thermal process is studied to demonstrate the availability of the proposed method.展开更多
The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-trigge...The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-triggering transmission strategy based on periodic sampling,under which a model-based stability criterion for the closed-loop network system is derived,by leveraging a discrete-time looped-functional approach.Marrying the model-based criterion with a data-driven system representation recently developed in the literature,a purely data-driven stability criterion expressed in the form of linear matrix inequalities(LMIs)is established.Meanwhile,the data-driven stability criterion suggests a means for co-designing the event-triggering coefficient matrix and the feedback control gain matrix using only some offline collected state-input data.Finally,numerical results corroborate the efficacy of the proposed distributed data-driven event-triggered network system(ETS)in cutting off data transmissions and the co-design procedure.展开更多
Dear Editor,This letter investigates the level curve tracking problem of unknown scalar fields using an unmanned aerial vehicle(UAV)and presents a robust reinforcement learning(RL)-guided model predictive control(MPC)...Dear Editor,This letter investigates the level curve tracking problem of unknown scalar fields using an unmanned aerial vehicle(UAV)and presents a robust reinforcement learning(RL)-guided model predictive control(MPC)scheme for the UAV.Specifically,we formulate the MPC trajectory tracking problem,wherein an RL-based trajectory planning algorithm provides the reference trajectory to guide the UAV towards the desired concentration.展开更多
This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the meas...This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the measurement residuals of partial sensors due to limited attack resources,is proposed to maximally degrade system estimation performance.The attack stealthiness condition is given,and then the estimation error covariance in compromised state is derived to quantify the system performance under attack.The optimal attack strategy is obtained by solving several convex optimization problems which maximize the trace of the compromised estimation error covariance subject to the stealthiness condition.Moreover,due to the constraint of attack resources,the selection principle of the attacked sensor is provided to determine which sensor is attacked so as to hold the most impact on system performance.Finally,simulation results are presented to verify the theoretical analysis.展开更多
This paper develops a fully distributed hybrid control framework for distributed constrained optimization problems.The individual cost functions are non-differentiable and convex.Based on hybrid dynamical systems,we p...This paper develops a fully distributed hybrid control framework for distributed constrained optimization problems.The individual cost functions are non-differentiable and convex.Based on hybrid dynamical systems,we present a distributed state-dependent hybrid design to improve the transient performance of distributed primal-dual first-order optimization methods.The proposed framework consists of a distributed constrained continuous-time mapping in the form of a differential inclusion and a distributed discrete-time mapping triggered by the satisfaction of local jump set.With the semistability theory of hybrid dynamical systems,the paper proves that the hybrid control algorithm converges to one optimal solution instead of oscillating among different solutions.Numerical simulations illustrate better transient performance of the proposed hybrid algorithm compared with the results of the existing continuous-time algorithms.展开更多
基金supported by the National Natural Science Foundation of China (62173034,61925303,62088101)。
文摘Dear Editor,Two-dimensional(2-D) systems have wide applications in image data processing,gas absorption and fluid dynamics analysis [1]-[3].When there exist abrupt changes in 2-D systems,they are usually modeled by 2-D Markov jump systems(MJSs) or 2-D semi-Markov jump systems(SMJSs).This letter investigates the control of 2-D SMJSs based on a novel mode generation mechanism,which could avoid mode ambiguousness phenomenon caused by the evolution of system mode in two different directions.The criterion that guarantees the almost surely exponential stability of the system is obtained.A thermal process is studied to demonstrate the availability of the proposed method.
基金supported in part by the National Key Research and Development Program of China(2021YFB1714800)the National Natural Science Foundation of China(62088101,61925303,62173034,U20B2073)+1 种基金the Natural Science Foundation of Chongqing(2021ZX4100027)the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germanys Excellence Strategy—EXC 2075-390740016(468094890)。
文摘The present paper deals with data-driven event-triggered control of a class of unknown discrete-time interconnected systems(a.k.a.network systems).To this end,we start by putting forth a novel distributed event-triggering transmission strategy based on periodic sampling,under which a model-based stability criterion for the closed-loop network system is derived,by leveraging a discrete-time looped-functional approach.Marrying the model-based criterion with a data-driven system representation recently developed in the literature,a purely data-driven stability criterion expressed in the form of linear matrix inequalities(LMIs)is established.Meanwhile,the data-driven stability criterion suggests a means for co-designing the event-triggering coefficient matrix and the feedback control gain matrix using only some offline collected state-input data.Finally,numerical results corroborate the efficacy of the proposed distributed data-driven event-triggered network system(ETS)in cutting off data transmissions and the co-design procedure.
基金supported by the National Science and Technology Major Project(2022ZD0119302)the National Natural Science Foundation of China(62173034,U23B 2059,62088101,62303054)。
文摘Dear Editor,This letter investigates the level curve tracking problem of unknown scalar fields using an unmanned aerial vehicle(UAV)and presents a robust reinforcement learning(RL)-guided model predictive control(MPC)scheme for the UAV.Specifically,we formulate the MPC trajectory tracking problem,wherein an RL-based trajectory planning algorithm provides the reference trajectory to guide the UAV towards the desired concentration.
基金supported by the National Natural Science Foundation of China(61925303,62173034,62088101,U20B2073,62173002)the National Key Research and Development Program of China(2021YFB1714800)Beijing Natural Science Foundation(4222045)。
文摘This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the measurement residuals of partial sensors due to limited attack resources,is proposed to maximally degrade system estimation performance.The attack stealthiness condition is given,and then the estimation error covariance in compromised state is derived to quantify the system performance under attack.The optimal attack strategy is obtained by solving several convex optimization problems which maximize the trace of the compromised estimation error covariance subject to the stealthiness condition.Moreover,due to the constraint of attack resources,the selection principle of the attacked sensor is provided to determine which sensor is attacked so as to hold the most impact on system performance.Finally,simulation results are presented to verify the theoretical analysis.
基金supported in part by the NationalKey Research and Development Program of China(2021YFB1714800)the National Natural Science Foundation of China(61925303,62088101,62073035,62173034)the Natural Science Foundation of Chongqing(2021ZX4100027)。
文摘This paper develops a fully distributed hybrid control framework for distributed constrained optimization problems.The individual cost functions are non-differentiable and convex.Based on hybrid dynamical systems,we present a distributed state-dependent hybrid design to improve the transient performance of distributed primal-dual first-order optimization methods.The proposed framework consists of a distributed constrained continuous-time mapping in the form of a differential inclusion and a distributed discrete-time mapping triggered by the satisfaction of local jump set.With the semistability theory of hybrid dynamical systems,the paper proves that the hybrid control algorithm converges to one optimal solution instead of oscillating among different solutions.Numerical simulations illustrate better transient performance of the proposed hybrid algorithm compared with the results of the existing continuous-time algorithms.