期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Decentralized Optimal Control and Stabilization of Interconnected Systems With Asymmetric Information
1
作者 Na Wang Xiao Liang +1 位作者 Hongdan Li Xiao Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期698-707,共10页
The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control p... The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm. 展开更多
关键词 Asymmetric information decentralized control forwardbackward stochastic difference equations interconnected system stalibization
在线阅读 下载PDF
A Feature Weighted Mixed Naive Bayes Model for Monitoring Anomalies in the Fan System of a Thermal Power Plant 被引量:5
2
作者 Min Wang Li Sheng +1 位作者 Donghua Zhou Maoyin Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第4期719-727,共9页
With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectiv... With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China. 展开更多
关键词 Abnormality monitoring continuous variables feature weighted mixed naive Bayes model(FWMNBM) two-valued variables thermal power plant
在线阅读 下载PDF
Estimating the State of Health for Lithium-ion Batteries:A Particle Swarm Optimization-Assisted Deep Domain Adaptation Approach 被引量:2
3
作者 Guijun Ma Zidong Wang +4 位作者 Weibo Liu Jingzhong Fang Yong Zhang Han Ding Ye Yuan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第7期1530-1543,共14页
The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging t... The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA. 展开更多
关键词 Deep transfer learning domain adaptation hyperparameter selection lithium-ion batteries(LIBs) particle swarm optimization state of health estimation(SOH)
在线阅读 下载PDF
Set-Membership Filtering Approach to Dynamic Event-Triggered Fault Estimation for a Class of Nonlinear Time-Varying Complex Networks
4
作者 Xiaoting Du Lei Zou Maiying Zhong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期638-648,共11页
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ... The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) fault estimation nonlinear time-varying complex networks set-member-ship filtering unknown input observer
在线阅读 下载PDF
Reliability Assessment of Microgrid Using Sequential Monte Carlo Simulation 被引量:4
5
作者 Lue-Bin Fang Jin-Ding Cai 《Journal of Electronic Science and Technology》 CAS 2011年第1期31-34,共4页
Sequential Monte Carlo simulation method is introduced to the reliability assessment of microgrid,and a Weibull distribution wind speed model is built to simulate the hourly wind speed of a specific site.Wind turbine ... Sequential Monte Carlo simulation method is introduced to the reliability assessment of microgrid,and a Weibull distribution wind speed model is built to simulate the hourly wind speed of a specific site.Wind turbine generator model combined with a two-state reliability model is applied to Monte Carlo simulation method,and results show that the wind turbine reliability model works well with sequential Monte Carlo simulation.A two-state reliability model of micro gas turbine and a load model from IEEE reliability test system (IEEE RTS) are also introduced to the reliability evaluation of microgrid.Case studies show that Monte Carlo simulation method is flexible and efficient dealing with microgrid consisting of renewable resources with fluctuation characteristics. 展开更多
关键词 Micro gas turbine MICROGRID MonteCarlo simulation RELIABILITY wind turbine.
在线阅读 下载PDF
Relaxed Stability Criteria for Time-Delay Systems:A Novel Quadratic Function Convex Approximation Approach
6
作者 Shenquan Wang Wenchengyu Ji +2 位作者 Yulian Jiang Yanzheng Zhu Jian Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期996-1006,共11页
This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i... This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples. 展开更多
关键词 Equivalent reciprocal combination technique quadratic function convex approximation approach STABILITY timevarying delay
在线阅读 下载PDF
Ultimately Bounded Output Feedback Control for Networked Nonlinear Systems With Unreliable Communication Channel: A Buffer-Aided Strategy
7
作者 Yuhan Zhang Zidong Wang +2 位作者 Lei Zou Yun Chen Guoping Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1566-1578,共13页
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication... This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy. 展开更多
关键词 Buffer-aided strategy neural networks nonlinear control output-feedback control unreliable communication channel
在线阅读 下载PDF
Reinforcement Learning Behavioral Control for Nonlinear Autonomous System 被引量:2
8
作者 Zhenyi Zhang Zhibin Mo +1 位作者 Yutao Chen Jie Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第9期1561-1573,共13页
Behavior-based autonomous systems rely on human intelligence to resolve multi-mission conflicts by designing mission priority rules and nonlinear controllers.In this work,a novel twolayer reinforcement learning behavi... Behavior-based autonomous systems rely on human intelligence to resolve multi-mission conflicts by designing mission priority rules and nonlinear controllers.In this work,a novel twolayer reinforcement learning behavioral control(RLBC)method is proposed to reduce such dependence by trial-and-error learning.Specifically,in the upper layer,a reinforcement learning mission supervisor(RLMS)is designed to learn the optimal mission priority.Compared with existing mission supervisors,the RLMS improves the dynamic performance of mission priority adjustment by maximizing cumulative rewards and reducing hardware storage demand when using neural networks.In the lower layer,a reinforcement learning controller(RLC)is designed to learn the optimal control policy.Compared with existing behavioral controllers,the RLC reduces the control cost of mission priority adjustment by balancing control performance and consumption.All error signals are proved to be semi-globally uniformly ultimately bounded(SGUUB).Simulation results show that the number of mission priority adjustment and the control cost are significantly reduced compared to some existing mission supervisors and behavioral controllers,respectively. 展开更多
关键词 Behavioral control mission supervisor nonlinear autonomous system reinforcement learning
在线阅读 下载PDF
Data-driven Reactive Power Optimization of Distribution Networks via Graph Attention Networks
9
作者 Wenlong Liao Dechang Yang +3 位作者 Qi Liu Yixiong Jia Chenxi Wang Zhe Yang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第3期874-885,共12页
Reactive power optimization of distribution networks is traditionally addressed by physical model based methods,which often lead to locally optimal solutions and require heavy online inference time consumption.To impr... Reactive power optimization of distribution networks is traditionally addressed by physical model based methods,which often lead to locally optimal solutions and require heavy online inference time consumption.To improve the quality of the solution and reduce the inference time burden,this paper proposes a new graph attention networks based method to directly map the complex nonlinear relationship between graphs(topology and power loads)and reactive power scheduling schemes of distribution networks,from a data-driven perspective.The graph attention network is tailored specifically to this problem and incorporates several innovative features such as a self-loop in the adjacency matrix,a customized loss function,and the use of max-pooling layers.Additionally,a rulebased strategy is proposed to adjust infeasible solutions that violate constraints.Simulation results on multiple distribution networks demonstrate that the proposed method outperforms other machine learning based methods in terms of the solution quality and robustness to varying load conditions.Moreover,its online inference time is significantly faster than traditional physical model based methods,particularly for large-scale distribution networks. 展开更多
关键词 Reactive power optimization graph neural network distribution network machine learning DATA-DRIVEN
原文传递
Synchrophasor-based Online State Estimated in Large-scale Power Grid 被引量:2
10
作者 Junjie Lin Chao Lu +4 位作者 Wenchao Song Yingduo Han Yinsheng Su He Huang Licheng Li 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第5期1613-1622,共10页
With integration of a larger amount of clean power sources and power electronic equipment,operation and dynamic characteristics of the power grid are becoming more and more complicated and stochastic.Therefore,it is n... With integration of a larger amount of clean power sources and power electronic equipment,operation and dynamic characteristics of the power grid are becoming more and more complicated and stochastic.Therefore,it is necessary and urgent to obtain accurate real-time states,which is difficult from traditional state estimation.This paper systematically develops a phasor measurement unit(PMU)based real-time state estimator for a realistic large-scale power grid for the first time.The estimator mainly relies on three refined algorithms,i.e.,an improved linear state estimation algorithm,a practical bad data identification method and a distributed topology check technique.Furthermore,a novel system architecture is designed and implemented for the China Southern Power Grid.Numerical simulations and extensive field operation results of the state estimator recorded under both normal and abnormal situations are presented.All the tests and field results demonstrate the advantages of the proposed algorithms in terms of online system monitoring and feasibility of refreshing the states of the whole system at intervals of tens of milliseconds. 展开更多
关键词 PMU-based state estimation design and implementation bad data identification topology analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部